rss
Gut 49:220-226 doi:10.1136/gut.49.2.220
  • Motility and visceral sensation

SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung's disease infants

  1. M H Shamb,
  2. V C H Luia,
  3. M Fua,
  4. B Chena,
  5. P K H Tama
  1. aDivision of Paediatric Surgery, Department of Surgery, University of Hong Kong, Pokfulam, Hong Kong, China, bDepartment of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
  1. Professor P K H Tam, Division of Paediatric Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China. paultam{at}hkucc.hku.hk
  • Accepted 29 January 2001

Abstract

BACKGROUND The primary pathology of Hirschsprung's disease (HD) is a congenital absence of ganglion cells in the caudal most gut. The spastic aganglionic bowel is often innervated by a network of hypertrophied nerve fibres. Recently, mutations of SOX10 have been identified in patients with HD but only in those with Waardenburg-Shah syndrome.

AIMS To understand the molecular basis for the pathogenesis of HD we intended to determine the specific cell lineages in the enteric nervous system which normally express SOX10 but are affected in disease conditions.

METHODS We studied colon biopsies from 10 non-syndromic HD patients, aged three months to four years, and 10 age matched patients without HD as normal controls. The absence of mutation in the SOX10 gene of HD patients was confirmed by DNA sequencing. Expression and cellular distribution of SOX10 in bowel segments of normal and HD infants were examined by reverse transcription-polymerase chain reaction and in situ hybridisation.

RESULTS We found that in normal infants and normoganglionic bowel segments of HD patients,SOX10 was expressed in both neurones and glia of the enteric plexuses and in the nerves among the musculature in normal colon. In the aganglionic bowel segments of patients,SOX10 expression was consistently lower and was found to be associated with the hypertrophic nerve trunks in the muscle and extrinsic nerves in the serosa.

CONCLUSION We conclude that SOX10 is normally required postnatally in the functional maintenance of the entire enteric nervous system, including neurones and glia. In non-syndromic HD patients who do not have the SOX10 mutation, theSOX10 gene expressed in the sacral region may be involved in the pathogenesis of the abnormal nerve trunks through interaction with other factors.

Footnotes

  • Abbreviations used in this paper:
    Dom
    dominant megacolon
    EDN3
    endothelin 3
    EDNRB
    endothelin B receptor
    ENS
    enteric nervous system
    HD
    Hirschsprung's disease
    RT-PCR
    reverse transcription-polymerase chain reaction