The prevalence and significance of circulating antibodies to gastric intrinsic factor and parietal cells in gastric carcinoma

BERTA UNGAR, R. G. STRICKLAND, AND C. M. FRANCIS

From the Clinical Pathology Department, the Royal Melbourne Hospital, and the Clinical Research Unit, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Melbourne, Victoria, Australia

SUMMARY The prevalence of circulating antibodies to gastric intrinsic factor and parietal cells was examined in 60 patients with histologically proven gastric carcinoma and was found not to differ from the prevalence of these antibodies in control subjects of similar age and sex distribution.

Amongst the 60 patients with gastric carcinoma seven were thought to have actual or potential pernicious anaemia.

The absence of an increased prevalence of antigastric antibodies in gastric carcinoma indicates that gastritis itself, whether autoimmune or not, is the likely common denominator underlying the predisposition to gastric carcinoma in both pernicious anaemia and chronic atrophic gastritis.

The studies of Kaplan and Rigler (1945) and Mosbech and Videbaek (1950) established that pernicious anaemia is associated with an incidence of gastric carcinoma approximately three times greater than that expected for the population at large.

On the basis of a study of 35 patients with gastric carcinoma Shearman, Finlayson, Wilson, and Samson (1966) suggested that the extent of this association may have been underestimated. We have investigated this possibility by estimating serum vitamin B₁₂ levels and the prevalence of circulating antibodies to gastric intrinsic factor and parietal cells in 60 patients with histologically proven gastric carcinoma. The prevalence of antigastric antibodies is compared with that in control subjects of similar age and sex distribution.

Patients and Methods

The 60 patients with gastric carcinoma comprised 37 men and 23 women. Blood samples were requested from patients with a diagnosis on admission or subsequently of gastric carcinoma admitted to the Royal Melbourne Hospital over a period of three years. Only those in whom a gastric carcinoma was histologically proven at operation or necropsy were included in this series. The age and sex distribution of the patients is shown in Tables I and II.

The control subjects for tests for antibody to intrinsic factor were 500 blood donors and 1,100 hospital patients (Ungar, 1968). The control subjects for tests for antibody to parietal cells were 600 blood donors and apparently healthy members of elderly citizens' clubs (Ungar, Stocks, Martin, Whittingham, and Mackay, 1968).

Antibody to intrinsic factor was detected by the coated-charcoal method (Gottlieb, Lau, Wasserman, and Herbert, 1965) as modified by Ungar (1967); it was considered to be present when the titre exceeded 5 ng units per ml serum (Irvine, 1966). Antibody to parietal cells was detected by the double-layer immunofluorescent technique using rat stomach (Whittingham and Mackay, 1969).

Serum vitamin B₁₂ levels were measured by microbiological assay with Euglena gracilis (Anderson, 1964).

Results

Circulating antibody to gastric intrinsic factor was found in one female patient and circulating antibody to gastric parietal cells was found in seven female and six male patients out of a total number of 23 female and 37 male patients with gastric carcinoma.

The distribution of positive tests for these antibodies according to age and sex in patients with gastric carcinoma and control subjects is shown in Tables I and II.
Table I Prevalence of antibodies to gastric intrinsic factor in 60 patients with gastric carcinoma and 1,600 controls

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>No. of Patients with Antibodies to Gastric Intrinsic Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>11-40</td>
<td>0/300</td>
</tr>
<tr>
<td>41-60</td>
<td>1/200</td>
</tr>
<tr>
<td>>60</td>
<td>3/300*</td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>11-40</td>
<td>0/300</td>
</tr>
<tr>
<td>41-60</td>
<td>0/200</td>
</tr>
<tr>
<td>>60</td>
<td>1/300*</td>
</tr>
</tbody>
</table>

*The apparent differences in prevalence of antibodies to gastric intrinsic factor between control and carcinoma patients were not statistically significant. *p > 0.10 using Fisher’s exact test for 2 x 2 contingency tables.

Table II Prevalence of antibodies to gastric parietal cells in 60 patients with gastric carcinoma and 600 control subjects

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>No. of Patients with Antibodies to Gastric Parietal Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>15-40</td>
<td>5/100</td>
</tr>
<tr>
<td>41-60</td>
<td>15/100</td>
</tr>
<tr>
<td>>60</td>
<td>21/100*</td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>15-40</td>
<td>2/100</td>
</tr>
<tr>
<td>41-60</td>
<td>4/100</td>
</tr>
<tr>
<td>>60</td>
<td>18/100*</td>
</tr>
</tbody>
</table>

*The apparent differences in prevalence of antibodies to gastric parietal cells between control and carcinoma patients were not statistically significant. *p > 0.10 using Fisher’s exact test for 2 x 2 contingency tables.

Discussion

Gastric carcinoma is said to supervene in 12% of patients with pernicious anaemia (Kaplan and Rigler, 1945). The observations by Shearman et al (1966) in 35 patients with gastric carcinoma revealed a high incidence of pernicious anaemia (20%) in gastric carcinoma.

In the present series of 60 cases of gastric carcinoma, the occurrence of pernicious anaemia 10 years before in one patient, the presence of vitamin B₁₂ deficiency suggested by low serum vitamin B₁₂ levels (150 pg/ml) in five patients at the time of diagnosis of gastric carcinoma, and the presence of antibody to intrinsic factor in another patient supported an increased coincidence of pernicious anaemia and gastric carcinoma, the actual or potential incidence being seven cases of pernicious anaemia in 60 cases of gastric carcinoma (12%). This estimated incidence is based on the assumption that the remaining patients with gastric carcinoma had no special predisposition to pernicious anaemia as they did not have an increased prevalence of antigastric antibodies when compared with control subjects.

The estimated incidence of pernicious anaemia in gastric carcinoma in the present series is lower than that reported by Shearman et al (1966). These findings, however, confirm those of Kravetz, Van Noorden, and Spiro (1967) and of te Velde (1967) who found no increased prevalence of parietal cell antibody in gastric carcinoma. In addition the present study has demonstrated that the prevalence of intrinsic factor antibody is not increased in gastric carcinoma.

Patients with simple atrophic gastritis have also been shown to have an increased incidence of gastric carcinoma (Walker, Strickland, Ungar, and Mackay, 1971). These patients do not have circulating antigastric antibodies and have no special predisposition to develop pernicious anaemia (Strickland, Ungar, and Mackay, 1970).

Although it remains uncertain what proportion of gastric carcinomas are preceded by atrophic gastritis, the present findings together with those of Walker et al (1971) indicate that it is the gastric lesion itself independent of accompanying autoimmune reactions which underlies the predisposition to gastric carcinoma in both pernicious anaemia and chronic atrophic gastritis.

We wish to thank Dr D. C. Cowling and Dr S. Whittingham for help and guidance; Dr J. M. Mathews for help with statistics; the medical staff of the Royal Melbourne Hospital for access to the medical records of the patients; Dr J. T. Andrews for
The prevalence and significance of circulating antibodies in gastric carcinoma

radioisotope services; Mrs P. Krupinska, Mrs B. M. White, and Miss M. J. Pittaway for technical assistance.

R.G.S. is supported by a grant from the National Health and Medical Research Council of Australia.

References

The prevalence and significance of circulating antibodies to gastric intrinsic factor and parietal cells in gastric carcinoma
Berta Ungar, R. G. Strickland and C. M. Francis

Gut 1971 12: 903-905
doi: 10.1136/gut.12.11.903

Updated information and services can be found at:
http://gut.bmj.com/content/12/11/903

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/