The cell population of the upper jejunal mucosa in tropical sprue and postinfective malabsorption

R. D. MONTGOMERY AND A. C. I. SHEARER

From the Metabolic Unit, East Birmingham Hospital, Birmingham

SUMMARY The cell population of the upper jejunal mucosa has been studied in cases of tropical sprue from the Far East and Middle East, and in similar cases arising in western Europe ('postinfective malabsorption'), and compared with cases of untreated coeliac disease and patients without small bowel disease.

Infiltration of the epithelial layer of the upper jejunal mucosa by lymphocytes was found in tropical sprue to the same extent as in coeliac disease, and, to a lesser extent, in 'postinfective malabsorption'.

In the lamina propria, in all forms of acute sprue there was an increased density of lymphocytes. With increasing duration and with increasing mucosal atrophy, the lymphocytes were progressively replaced by plasma cells, and the cellular infiltration in chronic sprue was indistinguishable from that of coeliac disease.

The findings suggest that a humoral antibody response is a feature of sprue, and becomes more prominent as the condition becomes chronic.

In the upper jejunal mucosa in cases of coeliac disease there is an excessive lymphocytic infiltration of the epithelium (Ferguson and Murray, 1971) whereas in the lamina propria the concentration of lymphocytes is reduced but there is an excess of plasma cells (Holmes, Asquith, Stokes, and Cooke, 1973).

In tropical sprue, hypercellularity of the lamina propria has often been described, and reference was made by Thurlbeck, Benson, and Dudley (1960), by Chacko, Job, Johnson, and Baker (1961), and by England and O'Brien (1966) to an apparent excess of lymphocytes in the epithelium, but cell counts have not been reported.

We have studied the lymphocyte and plasma cell population in jejunal biopsy specimens in cases of tropical sprue and compared them with cases of 'postinfective malabsorption' acquired in western Europe, and with cases of untreated adult coeliac disease.

Materials and Methods

Eight of the jejunal biopsy specimens were from patients with tropical sprue acquired in South-East Asia. Four of these were young British servicemen repatriated from Hong Kong and Malaya with acute sprue; three others were cases of more than a year's duration acquired in India (two Indian immigrants and one English traveller), and one was a case of longstanding disease from China. Four cases were of a sprue syndrome arising in the Middle East and indistinguishable from tropical sprue (Haeney, Montgomery, and Schneider, 1974) (three British expatriates with an acute illness and one Yemenite with 18 months' history). Nine cases were of a similar acute illness described as postinfective malabsorption and acquired in western Europe (Montgomery, Beale, Sammons, and Schneider, 1973).

The 12 cases of coeliac disease were untreated adults in whom gluten sensitivity was subsequently confirmed. As controls, biopsies were studied from 20 patients who presented with abdominal symptoms or anaemia, but in whom detailed investigations showed no evidence of small-bowel disease.

Biopsies were taken under radiological control from the upper jejunum. The cut sections were of 5μ thickness. Lymphocytes in the epithelium were counted per 100 epithelial cells from four different well orientated areas of each specimen, and the mean of the four counts was taken.

Lamina propria counts were made per unit
area, using oil immersion and a graticule. Separate
counts were made (a) at the level of the base of the
cysts ('deep' counts) and (b) in the middle of the
villi where these were well formed, or beneath the
epithelium near the luminal surface in atrophic
specimens ('superficial' counts).

In each instance four counts were made from
different areas, and the mean was expressed as cells
per sq mm. A variety of stains was employed, but
for the simultaneous counting of lymphocytes and
plasma cells, standard lightly stained haematoxylin–
eosin sections were found to be satisfactory.

Results

Interepithelial Lymphocytes

In 20 normal subjects the range of lymphocyte
counts within the epithelial layer was 7-22 per 100
epithelial cells.

In postinfective malabsorption there was a slight
rise above this range (fig 1). In tropical sprue the
counts were invariably raised, up to 96 per 100
epithelial cells.

The duration of illness in postinfective cases at
the time of biopsy was from six to 11 weeks, whereas
the duration was longer than 10 weeks in all the
tropical sprue cases. The three highest counts (over
80 per 100 cells) were in cases with over six months'
history. Apart from this, the interepithelial lympho-
cyte counts bore no constant relation to the length
of history within the sprue series.

In coeliac disease the counts ranged from 32 to 76,
within a mean of 57 per 100 epithelial cells.

The Lamina Propria

In normal subjects, the cell population of the lamina
propria increased progressively from the tip to the
base of the villi (table 1). This applied particularly
to the plasma cells which were scanty and variable
at the tips, and ranged from 341 to 2060 per sq mm
at the level of the crypts. Small numbers of eosino-
phils featured in the counts of only five normal
subjects; they tended to occur in small clumps
in the villi.

In postinfective malabsorption there was an

<table>
<thead>
<tr>
<th>Tip of Villus</th>
<th>Mid Villus</th>
<th>Base of Crypts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma cells</td>
<td>335</td>
<td>708</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>1963</td>
<td>2606</td>
</tr>
<tr>
<td>Other cells</td>
<td>4547</td>
<td>5083</td>
</tr>
<tr>
<td>Total cells</td>
<td>6845</td>
<td>8397</td>
</tr>
</tbody>
</table>

Table 1 Cell densities in the normal lamina propria
in the villi and at the level of the base of the crypts

1Mean counts per sq mm in 20 specimens.

![Fig 1](image1.png)

Fig 1 Interepithelial lymphocyte counts in all specimens
(lymphocytes per 100 epithelial cells).

![Fig 2](image2.png)

Fig 2 Densities of lymphocytes, plasma cells, and
other cells in the lamina propria. The figures given are
the mean of deep and superficial counts (see text), in
each diagnostic group. ■ lymphocytes,
■ plasma cells, □ other cells.
The cell population of the upper jejunal mucosa in tropical sprue

<table>
<thead>
<tr>
<th>Total Cells (Mean ± SEM)</th>
<th>Lymphocytes (Mean ± SEM)</th>
<th>Plasma Cells (Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (range)</td>
<td>11021 ± 604</td>
<td>3482 ± 442</td>
</tr>
<tr>
<td>Postinfective malabsorption (range)</td>
<td>15155 ± 729</td>
<td>6057 ± 958</td>
</tr>
<tr>
<td>Tropical sprue (range)</td>
<td>16567 ± 1298</td>
<td>3741 ± 703</td>
</tr>
<tr>
<td>Coeliac disease (range)</td>
<td>15996 ± 938</td>
<td>2235 ± 233</td>
</tr>
</tbody>
</table>

Table II Cell densities in the lamina propria ('deep counts') in normal subjects, postinfective malabsorption, tropical sprue, and untreated coeliac disease

1Mean counts per sq mm area ± standard error of mean (SEM)

increase in lymphocytes and to a lesser extent in plasma cells at all levels (fig 2). In tropical sprue also there tended to be an increase in lymphocytes, but at the base of the crypts the mean figure for the series was not significantly above normal; the plasma cell counts were significantly high (table II).

In coeliac disease, as shown in fig 2, the plasma cell count reached even higher levels, whereas the lymphocytes were slightly reduced.

The eosinophil counts in postinfective malabsorption and coeliac disease did not differ from normal. In tropical sprue the mean count was slightly raised, these cells being observed in small numbers in seven out of 12 cases.

Analysis of cell counts in relation to the duration of disease showed that with increasing chronicity there was a progressive increase in the plasma cell density (fig 3). The lymphocyte counts were more variable but tended to fall from their initial high level, particularly after six months (table III).

Table III Density of lymphocytes in lamina propria in cases of sprue related to duration of illness

1Mean counts per sq mm and standard error of mean (SEM)

The plasma cell count showed a correlation with the degree of villous atrophy (fig 4). Atrophy was greater in the coeliac patients, nine of whom had a flat or 'mosaic' mucosa, with subtotal atrophy.

No significant changes were detected among other cell types in the lamina propria, which included fibroblasts, histiocytes, capillary endothelium, and small numbers of neutrophils and mast cells.

Discussion

The interepithelial lymphocyte counts in our normal subjects are lower by some 30% than the normal range established in 40 cases by Ferguson and Murray (1971), and our figures for coeliac disease also are correspondingly lower than theirs. We believe that this may be due to the fact that our sections were 5μ in thickness compared with 7μ. Lymphocytes stand out more clearly than the epithelial cells, and the numbers of the latter tend to be
Journey to epithelial cells; morphology was after attacks. The sorption, symptoms, India in IV conditions of in tropical arising malabsorption coeliac are slightly increased stant refocusing (Whitehead, 1971). Like Ferguson and Murray (1971), we have found other conditions in which the count is increased. One of the highest counts was in a patient who had repeated attacks of dysentery during an overland journey to India—requiring a short spell in hospital in India with intravenous therapy. At the time of biopsy after her return she had mild abdominal symptoms, but tests showed no evidence of malabsorption. The lymphocyte count was 90 per 100 epithelial cells; in all other respects the jejunal morphology was normal.

We have also found raised counts in a case of Whipple’s disease before treatment, in two cases of hypogammaglobulinaemia with malabsorption, and in a few but not all cases of the blind-loop syndrome due to small bowel diverticulosis. In all these conditions the upper jejunal mucosa may possibly be exposed to an unusual bacterial challenge. On the other hand, it can hardly be claimed that this is a specific response either to bacteria or gluten. Thompson (1973) has found increased interepithelial lymphocyte counts in the duodenal bulb in chronic duodenitis, and Ferguson and Murray (1971) reported high counts in generalized autoimmune disorders.

With regard to the lamina propria, we have confirmed earlier observations that the density of lymphocytes and plasma cells tends to be increased in tropical sprue. Rubin and Dobbins (1965) observed that the predominant cells of the lamina propria were lymphocytes in tropical sprue, as compared with plasma cells in coeliac disease. Our individual counts, however, show that the process is a dynamic one. With evolution of the sprue illness, the initially high lymphocyte population is progressively replaced by plasma cells, which come to dominate the picture in chronic cases, just as they do in coeliac disease.

As a rule the highest plasma cell counts were found in the flattest biopsies. There was a broad overlap between sprue and coeliac cases, and in biopsies with a comparable degree of partial atrophy there was no numerical difference in the cell populations. Nor could we find any other features specific for either condition. Abnormal morphology of the enterocytes was equally severe, depending on the degree of mucosal atrophy. Eosinophil cells were slightly more prevalent in the sprue cases; but this could be due to other features of the tropical environment not necessarily related to sprue.

Numerically, the changes we have recorded in plasma cell population are substantial, both in coeliac disease and chronic sprue, the increase above normal in terms of cross-sectional area being from five to ten-fold. Changes in gross morphology make it difficult to estimate what this means in terms of total plasma cell population. Nevertheless our findings are at variance with those of Crabbé, Douglas, and Hobbs (1970). Using immunohistochemical techniques they estimated an increase in globulin-secreting plasma cells of the order of only 30% in untreated coeliac disease, in terms of unit volume. In three cases of chronic sprue the same authors found an actual reduction in the total of these cells below the normal (Douglas, Crabbé, and Hobbs, 1970).

If it is accepted that the prime function of intestinal plasma cells is the production of antibody, the cell
The cell population of the upper jejunal mucosa in tropical sprue

...changes which we have observed suggest that a humoral antibody response is involved in the sprue syndrome, and becomes of increasing importance as the condition becomes chronic.

References

The cell population of the upper jejunal mucosa in tropical sprue and postinfective malabsorption

R. D. Montgomery and A. C. I. Shearer

Gut 1974 15: 387-391
doi: 10.1136/gut.15.5.387

Updated information and services can be found at:
http://gut.bmj.com/content/15/5/387

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/