The predictive accuracy of the postvagotomy insulin test: A new interpretation

R. G. FABER, R. C. G. RUSSELL, J. V. PARKIN, P. WHITFIELD, AND M. HOBSLEY

From the Department of Surgical Studies, The Middlesex Hospital and Medical School, London

SUMMARY Insulin-stimulated gastric secretion alone, without reference to basal secretion, has been examined in 45 male patients with duodenal ulcer in whom no gastric operation had been performed and in 124 patients following vagotomy for duodenal ulcer. Gastric juice was examined in terms not only of conventional indices, observed volume, titratable acidity and acid output, but also $V_G$, the volume corrected for pyloric loss and duodenal reflux.

The range of secretion of the unoperated subjects was established in terms of peak and half- to two-hour values for all indices. By reference to these ranges, secretion of postvagotomy subjects could be divided into two groups: (a) those with secretion within the preoperative range, and (b) those with secretion less than the lower limit of the preoperative range.

The best discrimination was given by $V_G$; those within the preoperative range (peak $V_G$ in excess of 140 ml/hour and $V_G$ half to two hours in excess of 105 ml/hour) had a 50% liability to recurrent ulcer, while those below the preoperative range had a zero liability to recurrent ulcer.

Of the conventional indices acid output gave the best discrimination, which was almost as good as $V_G$. Peak acid output of 8 mmol/hour or acid output one half to two hours of 5.25 mmol/hour discriminated into two groups, with a 50% or zero liability to recurrent ulcer. Titratable acidity (Hollander’s index of secretion), being highly susceptible to reflux, was not an adequate discriminant.

Surgical division of the vagus nerves as a treatment for duodenal ulceration was reintroduced by Dragstedt and Owens in 1943. After reporting preliminary results on canine stomach pouches (Hollander, Jemerin, and Weinstein, 1942) Hollander (1946) described the use of the insulin test for detecting the presence of intact vagal fibres in patients following vagotomy. Two years later (Hollander, 1948) he modified his criteria and defined a positive test as one in which the free acidity in response to insulin-induced hypoglycaemia was more than 20 mmol/litre in excess of basal acidity. However he remained cautious with regard to these criteria saying, ‘At no time have we stated that the test can predict the chances that the patient will be relieved of his ulcer or its symptoms, or that they will not recur at some future date’. After another two years’ experience he clearly stated, ‘The insulin test cannot be used to prognosticate clinical results of vagotomy’ (Weinstein, Hollander, Lauber, and Colp, 1950).

Many authors have suggested other criteria for defining a positive test, culminating in the multiple approach of Bank, Marks, and Louw (1967). They used five criteria, those of Hollander (1948), Waddell (1957), Bachrach (1962), Ross and Kay (1964), and one of their own, and scored one plus for each positive criterion. However, the value of any of the newer criteria in predicting the likelihood of recurrent ulceration in the individual patient rather than in groups of patients was dismissed by Kronberg (1971) who said: ‘All these criteria have a higher discriminative ability than those of Hollander, but their value in the diagnosis of recurrence is small.’

All criteria previously used have defined the result of the insulin test in terms of a rise in secretion during the insulin-stimulated period compared with the basal period. Yet basal secretion is well known to be very variable (Baron and Alexander-Williams, 1973). It seemed to us, therefore, that insulin-stimulated...
secretion alone, without reference to basal secretion, might with greater accuracy predict the liability to recurrent peptic ulceration after vagotomy.

We have examined insulin-stimulated secretion not only in terms of conventional indices, ie, observed volume, titratable acidity, and acid output, but also as \( V_G \), the observed volume of gastric juice after correction for pyloric losses (Hobsley and Silen, 1969) and duodenal reflux (Hobsley, 1974).

**Experimental Design and Patients**

Each subject fasted and abstained from tobacco and all medication known to affect gastric secretion from midnight. From 9 am the subject lay semirecumbent on a couch, a specially prepared two-lumen nasogastric tube (Thomson, Russell, and Hobsley, 1973) was passed, and its correct position in the stomach checked by the water recovery test of Hassan and Hobsley (1970). In 123 subjects phenol red was, throughout each study, instilled into the stomach via the small lumen (Hobsley and Silen, 1969). After at least a half-hour basal collection, soluble insulin (0:2 units/kg) was injected intravenously, and gastric juice was collected in 10-minute samples for a further two hours. Venous blood samples, for the measurement of blood glucose, were taken at intervals during the study, and only tests where adequate hypoglycaemia (<40 mg/100 ml) (Sun and Shay, 1960) was obtained were included in this study.

Studies were performed on (1) 45 male patients with duodenal ulceration, in whom no gastric operation had been performed (unoperated subjects), and in 37 of these patients phenol red was used; (2) 124 male patients following treatment for duodenal ulcer by vagotomy (81 truncal, 35 selective, and eight proximal gastric) with or without a drainage procedure, and phenol red was used in 86 of these subjects. The length of follow up was between six months and 10 years.

**Methods and Calculations**

On each sample volume was determined, and, then after filtration through Whatman’s no 1 filter paper, the following measurements were made: titratable acidity (Radiometer automatic titrator, titrations to pH 7), sodium, potassium, and chloride ion concentrations (EEL flame photometer and chloride meter), and phenol red concentration (Unicam SP spectrophotometer at 550 and 410 nm). The reason for making readings at two wavelengths was to correct the phenol red readings for the presence of blood and bile. The correction for blood was first described by Crawford and Hobsley (1968), and since then we have found that the same method corrects for the presence of bile also. The correction formula is:

Corrected reading = reading at 550 nm - 0:13511 (reading at 410 nm) + 0:0039.

The electrolyte estimations were checked by comparing the sum of the cations with the chloride concentration (Hirschowitz, 1961). The phenol red standard was handled as described by Hobsley and Silen (1969).

The volume \( V_{obs} \) of each sample of gastric juice was, in those cases where phenol red was used, divided by the recovery fraction of phenol red to determine the pyloric loss-corrected volume \( V_{cor} \). The volume of duodenal reflux \( V_R \) present in each sample was calculated from the sodium output and volume by the formula:

\[
V_R = 7:34 \frac{Q_{Na}}{\text{V}_{cor}} - 0:0712 \text{V}_{cor} - 1:281
\]

validated during insulin-stimulated secretion by Faber, Russell, Royston, Whitfield, and Hobsley (1974). This formula is an updated version of that originally propounded by Hobsley (1974).

**Results**

**UNOPERATED SUBJECTS**

**Gastric secretion corrected for pyloric loss and duodenal reflux—\( V_G \)**

Gastric secretion was first examined in the 37 unoperated subjects in whom phenol red had been used. The volume of secretion, expressed as \( V_G \) ml/hr, was determined for each of the four half-hour periods following the injection of insulin (fig 1). As the groups were not normally distributed, means and standard errors were calculated after logarithmic transformation.

In the first half hour, secretion was always less than in any of the subsequent half hours. The greatest output was obtained sometimes in the second, sometimes in the fourth, but most often in the third half hour, and the mean secretion during the third half hour was significantly greater than in the second \( (t = 3.78, \text{p} < 0.001) \) or fourth \( (t = 2.98, \text{p} < 0.01) \).

In view of these findings, stimulated secretion was therefore expressed in two ways: (1) peak secretion, defined as the sum of the \( V_G \) of the three highest consecutive 10-minute samples, multiplied by 2 (ml/hr); (2) half- to two-hour secretion, which was the sum of the \( V_G \) of the nine samples during this period, divided by 1.5, thus again expressed as ml/hr. The ranges of secretion of the preoperative group, in terms both of peak and half- to two-hour secretion, were defined as being within two standard deviations of the mean (95% tolerance limits) and are shown in figure 1.
The predictive accuracy of the postvagotomy insulin test: A new interpretation

Fig 1  Secretary response, $V_G$ ml/hour, to insulin 0·2 units/kg iv in 37 unoperated subjects: (a) in each half hour after the injection of insulin; (b) peak value calculated as the sum of the three highest consecutive 10-minute samples multiplied by 2 (ml/hour); (c) half- to two-hour value as sum of secretion in second, third, and fourth half hours, divided by 1·5 (ml/hour). Means, standard errors of means, and 95% tolerance limits have been calculated after logarithmic transformation.

At the top is shown the numbers of patients whose secretion was greatest in the half hour indicated. In some patients, peak secretion was greater than the value of the maximal half hour, the three highest consecutive samples not being within one half-hour period.

Conventional Indices of Measurement

Insulin-stimulated secretion was considered, in all 45 unoperated subjects, in terms of observed volume, titratable acidity, and acid output. As with $V_G$, secretion during the first half hour was less than in the subsequent three half-hour periods by all indices of measurement. Therefore peak secretion and half- to two-hour secretion were also calculated for these indices and the preoperative ranges established. Like $V_G$, secretion expressed as observed volume or acid output was distributed on a logarithmic scale, and statistical analysis was performed after logarithmic transformation. Unlike all the other indices of measurement, it was found that the best way to transform to a normal distribution the values of secretion expressed as titratable acidity was to take the square of each value. The 95% (ie, 2 standard deviations from the mean) and 99% (ie, 3 standard deviations from the mean) tolerance limits for each group were calculated.

In table I, the mean values and lower 95% and 99% limits of the range of each group are shown; observed volume, titratable acidity, acid output, and $V_G$ are all expressed as peak and half- to two-hour secretion.

Postvagotomy Subjects

Secretion corrected for pyloric losses and duodenal reflux—$V_G$

Stimulated secretion, expressed as $V_G$ ml/hr, in the 86 postvagotomy subjects in whom phenol red was

<table>
<thead>
<tr>
<th>Observed Volume (ml/hour)</th>
<th>Titratable Acidity (mmol/litre)</th>
<th>Acid Output (mmol/hour)</th>
<th>$V_G$ (ml/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak</td>
<td>1-2 Hour</td>
<td>Peak</td>
</tr>
<tr>
<td>Mean</td>
<td>270</td>
<td>213</td>
<td>115</td>
</tr>
<tr>
<td>Lower 95% tolerance limit of range</td>
<td>125</td>
<td>88</td>
<td>83</td>
</tr>
<tr>
<td>Lower 99% tolerance limit of range</td>
<td>85</td>
<td>57</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 1 Insulin-stimulated secretion in male patients with duodenal ulcer
340

R. G. Faber, R. C. G. Russell, J. V. Parkin, P. Whitfield, and M. Hobsley

within the preoperative range. Likewise the secretion in all four subjects with symptoms suggestive of recurrent ulceration was within the preoperative range. However, of the 73 subjects with no symptoms suggestive of recurrent ulceration, only six in terms of peak secretion and seven in terms of half-to-two-hour secretion were within the preoperative range; all other subjects secreted less than the preoperative group.

Conventional indices of measurement

Insulin-stimulated secretion in all 124 postvagotomy patients was compared with the preoperative range of secretion, both peak and half-to-two-hour values, in terms of observed volume (\(V_{obs}\)), titratable acidity, and acid output.

In table II the distribution of patients relative to the lower 95% tolerance limit of the unoperated group is summarized. Only observed volume gave a discrimination of subjects into two groups to an extent comparable to that achieved in terms of \(V_G\). In terms of peak \(V_{obs}\) all patients with recurrent ulcer or recurrent symptoms secreted within the preoperative range, and as \(V_{obs}\) half-to-two-hours only one patient with a recurrent ulcer secreted less than the lower limit of this range. However, 16 and 20 asymptomatic subjects were within the preoperative ranges of the peak and half-to-two-hour periods respectively. Both titratable acidity and acid output failed adequately to discriminate, because the number of patients with recurrent ulcer below the lower limits of the respective preoperative ranges was unacceptably high.

In table III the distributions of patients in terms of titratable acidity and acid output relative to the lower 99% tolerance limits of the unoperated group are summarized, and for comparison the Hollander status is added. Titratable acidity one half to two hours still failed adequately to discriminate into two groups, and, whereas peak titratable acidity did do so, 26 asymptomatic patients secreted within the preoperative range. Of the conventional indices, acid output (fig 3) gave the best discrimination; when

<table>
<thead>
<tr>
<th>Observed Volume</th>
<th>Titratable Acidity</th>
<th>Acid Output</th>
<th>(V_G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1-2 Hour</td>
<td>Peak 1-2 Hour</td>
<td>Peak 1-2 Hour</td>
<td>Peak 1-2 Hour</td>
</tr>
</tbody>
</table>

| Above Unoperated Lower 95% Tolerance Limits |  |  |  |  |  |
|---------------------------------------------|---|---|---|---|
| Recurrent ulcer |  |  |  |  |  |
| Recurrent symptoms |  |  |  |  |  |
| No symptoms |  |  |  |  |  |

| Below Unoperated Lower 95% Tolerance Limits |  |  |  |  |  |
|---------------------------------------------|---|---|---|---|
| Recurrent ulcer |  |  |  |  |  |
| Recurrent symptoms |  |  |  |  |  |
| No symptoms |  |  |  |  |  |

Table II  Distribution of postvagotomy patients by reference to the unoperated lower 95% tolerance limits
Distribution by Our Criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Clinical Status</th>
<th>Number in Terms of Titratable Acidity Peak</th>
<th>% 2 Hour</th>
<th>Number in Terms of Acid Output Peak</th>
<th>% 2 Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above unoperated</td>
<td>Recurrent ulcer</td>
<td>15</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>lower 99% tolerance</td>
<td>No symptoms</td>
<td>26</td>
<td>26</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Below unoperated</td>
<td>Recurrent ulcer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lower 99% tolerance</td>
<td>No symptoms</td>
<td>76</td>
<td>76</td>
<td>89</td>
<td>87</td>
</tr>
</tbody>
</table>

Distribution by Hollander Status

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Clinical Status</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent ulcer</td>
<td>Recurrent ulcer</td>
<td>13</td>
</tr>
<tr>
<td>No symptoms</td>
<td>No symptoms</td>
<td>44</td>
</tr>
<tr>
<td>Recurrent ulcer</td>
<td>Recurrent ulcer</td>
<td>2</td>
</tr>
<tr>
<td>No symptoms</td>
<td>No symptoms</td>
<td>58</td>
</tr>
</tbody>
</table>

Table III Distribution of postvagotomy patients by reference to two sets of criteria

Fig 3 Comparison of secretion, expressed as acid output, in unoperated and postvagotomy groups. Mean and standard error of mean in the unoperated group calculated after logarithmic transformation. The dotted line represents the 95% tolerance limits, and the lowest closed line the lower 99% tolerance limit of the unoperated group. In the postvagotomy group closed circles represent patients with recurrent ulcer, triangles patients with recurrent symptoms, and open circles patients with no symptoms.

Hollander’s contribution (Hollander, 1946) was to direct attention to insulin-induced hypoglycaemia as a vagal stimulus to gastric secretion. However, his fundamental approach to measurement of the response to this stimulus was to compare gastric secretion during insulin-induced hypoglycaemia with the same subject’s basal secretion immediately before the insulin was given (Hollander, 1948). This was merely an example of the technique of using the subject as his own control, a technique of recognized validity and proven worth in countless fields. Unfortunately, this approach depended on the assumption that basal gastric secretion is reproducible and constant in any individual, and this assumption has since been disproved (Baron, 1963; Gillespie, Elder, Smith, Kennedy, Gillespie, Kay, and Campbell, 1972).

The present study has therefore ignored basal secretion. As a standard for comparison, we have replaced basal secretion after vagotomy with insulin-stimulated secretion in male patients with duodenal ulcer before vagotomy. We emphasize that our findings, therefore, necessarily related only to male
patients after vagotomy for duodenal ulcer. The principle of our test is that the gastric secretion of such patients during insulin-induced hypoglycaemia is compared with the range of values obtained in a group of patients with duodenal ulcer who had not undergone vagotomy.

In making the comparison, we have studied not only the conventional indices of gastric secretion—volume, titratable acidity, acid output—but also \( V_G \), the volume of gastric juice after correction for pyloric losses and duodenal reflux. In making the comparison between data for unoperated patients and data after operation we have used the 95% tolerance limits of the former for volume and \( V_G \) but the 99% tolerance limits for titratable acidity and acid output. These two indices are particularly liable to negative errors occasioned by the reflux of alkaline fluid from the duodenum into the stomach. Because of this tendency we have found it necessary to reduce the lower limit defining the unoperated range in respect of these indices.

Our findings have been that volume, acid output, and \( V_G \) all give a much better prediction of recurrent ulceration, proven or suspected, than the Hollander criteria. The best prediction, as one might expect, is given by the most accurate index of gastric secretion, i.e., \( V_G \): all patients with recurrence had an insulin-stimulated secretion in the preoperative range, while only six out of 73 patients with no evidence of recurrence had a secretion level within that range. Acid output and volume gave a reasonable, but definitely less good, prediction; titratable acidity, the basis of Hollander’s criteria, gave a very poor prediction. Since \( V_G \) is the most accurate index and its estimation requires the measurement of pyloric losses, it was fortunate that the errors introduced by bile into the spectrophotometric determination of phenol red could be circumvented (see Methods).

The reason for the poor index given by titratable acidity is presumably its great susceptibility to the error produced by reflux of alkaline material from the duodenum into the stomach; such reflux greatly reduces titratable acidity both by dilution and by neutralization. The mathematical relationships have been fully explored by Fiddian-Green, Faber, Russell, Whitfield, and Hobsley (1974). On the other hand, reflux reduces acid output only by neutralization, and the acid output therefore falls proportionately less than does the titratable acidity. In retrospect, it was unfortunate that Hollander chose not only basal secretion as his standard for comparison, but titratable acidity as his index of gastric secretion—the one index that is most susceptible to error.

The application of the criteria suggested in this paper to past or future data on insulin-stimulated secretion after vagotomy should, if there is any merit in our approach, cast light on some other puzzling features that have been reported: for example, the apparent variability of the response to hypoglycaemia at various times after the operation (Smith, Gillespie, Elder, Gillespie, and Kay, 1972), and the disparity in incidence of ‘complete’ and ‘incomplete’ vagotomy from different centres.

References


The predictive accuracy of the postvagotomy insulin test: A new interpretation.

R G Faber, R C Russell, J V Parkin, P Whitfield and M Hobsley

Gut 1975 16: 337-342
doi: 10.1136/gut.16.5.337

Updated information and services can be found at:
http://gut.bmj.com/content/16/5/337

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections:
Stomach and duodenum (1689)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/