Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin to the diagnosis of the Zollinger-Ellison syndrome

C. B. H. LAMERS AND J. H. M. VAN TONGEREN

From the Department of Medicine, Division of Gastroenterology, University Hospital St. Radboud, Nijmegen, The Netherlands

SUMMARY To evaluate the usefulness of provocation tests in the diagnosis of the Zollinger-Ellison (ZE) syndrome stimulation tests with calcium, 15 mg/kg.3 h, and secretin GIH, 1 U/kg.30 s, were performed in 15 patients with histologically proven or suspected ZE syndrome. Nine of these 15 patients were without previous gastric surgery and in them meal stimulated serum gastrin levels were measured as well. These tests were also performed in normal subjects and in patients with duodenal ulcer, antrectomy, total gastrectomy, and achlorhydria. All tests were considered to be positive if a more than a 50% increase in serum gastrin was found. The results indicate that secretin stimulation is the provocation test of first choice in the diagnosis of this syndrome. This test is most valuable for the following reasons: (1) there were few (two out of 15) false-negative test results in ZE patients; (2) there were no false-positive tests in 69 patients without gastrinoma; (3) it was easy and quick to perform; and (4) there were no adverse reactions. The two ZE patients with negative secretin stimulation tests had negative calcium stimulation tests as well, in spite of histologically proven gastrinoma. In 11 patients with suspected or proven ZE syndrome and basal serum gastrin levels of less than 1000 pg/ml a rather good correlation (r = 0.841; P < 0.01) was found between the percental increase in serum gastrin after stimulation by calcium and secretin. Meal stimulated serum gastrin levels are helpful only in patients without previous gastric surgery.

The preoperative diagnosis of Zollinger-Ellison (ZE) syndrome is based on the combination of basal gastric acid hypersecretion and hypergastrinaemia (Isenberg et al., 1973). The criteria of acid secretion as proposed for the ZE syndrome, however, give both false positive and false negative results (Aoyagi and Summerskill, 1966; Kaye et al., 1970; Lewin et al., 1972). The serum gastrin level, as measured by radioimmunoassay, is a valuable tool for the diagnosis of ZE syndrome (Thompson et al., 1972a; Isenberg et al., 1973; Walsh and Grossman, 1975). In some ZE patients, however, the serum gastrin level may at times be only slightly raised and an overlap with non-ZE patients may be present (Thompson et al., 1972a; Isenberg et al., 1973; Walsh and Grossman, 1975). On the other hand, hypergastrinaemia in the absence of achlorhydria or gastrinoma has been found in patients with excluded gastric antrum (Korman et al., 1972b), antral G-cell hyperplasia (Polak et al., 1972; Ganguli et al., 1974), non-tumorous hypergastrinaemic hyperchlorhydria (Straus and Yalow, 1975), uraemia (Korman et al., 1972a), post-vagotomy (Stern and Walsh, 1973), pyloric obstruction (Feurle et al., 1972), and postprandial conditions (Berson and Yalow, 1972). Provocation tests have been advocated in patients suspected of ZE syndrome with fasting serum gastrin levels of less than 1000 pg/ml (Isenberg et al., 1973) or less than 10 times the normal median (Walsh and Grossman, 1975). The aim of stimulation tests is to differentiate tumorous from antral gastrin in patients with slight or moderate hypergastrinaemia.

Various provocation tests have been proposed, such as administration of calcium (Passaro et al., 1972), secretin (Isenberg et al., 1972; Thompson et al., 1972b), glucagon (Korman, 1973a; Becker et al., 1973), and ingestion of a protein rich meal.
Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin 129

(Berson and Yalow, 1972). The value of these tests has been studied in small series (Berson and Yalow, 1972; Isenberg et al., 1972; Passaro et al., 1972; Thompson et al., 1972b; Becker et al., 1973; Bradley et al., 1973; Korman et al., 1973a, b; Bonfils et al., 1974) and, recently, in relatively larger groups of ZE patients (Creutzfeldt et al., 1975; Thompson et al., 1975). However, comparison of the value of different provocation tests in the same patient has not been recorded previously.

In this study, the significance of calcium and secretin stimulation tests was determined in 15 patients with histologically proven or suspected ZE syndrome. Moreover, the increases in serum gastrin after both provocation tests were compared. The effect of ingestion of a standard test meal on serum gastrin was studied in nine ZE patients without previous gastric surgery. The incidence of false test results in patients without gastrinoma was evaluated by studying these tests in normal subjects, duodenal ulcer patients, patients with antrectomy and gastroduodenostomy (Billroth I) or gastrojejunostomy (Billroth II), total gastrectomy, and achlorhydria.

Methods

The characteristics of 15 patients with ZE syndrome are summarised in Table 1. The serum gastrin levels recorded in the Table are the lowest and highest values found during follow-up periods from six months to 3½ years. The wide ranges in serum gastrin concentrations in some ZE patients are caused by the effect of progressive tumour growth or surgical procedures, such as total gastrectomy and parathyroidectomy, on the serum gastrin level. The diagnosis of duodenal ulcer and stomal ulcer was made by barium meal or endoscopy. Achlorhydria was defined as a gastric pH of more than 6 after stimulation with pentagastrin in an intramuscular dose of 6 μg/kg.

The calcium stimulation test was performed as described by Passaro et al. (1972). After an overnight fast 5 mg/kg.h calcium was infused as calcium gluconate over three hours. Serum gastrin levels before and at the end of the calcium infusion were used for calculation.

After drawing two fasting blood samples, pure natural porcine secretin GIH (Karolinska Institute, Stockholm) in a dose of 1 U/kg was injected intravenously within 30 seconds. Five, 10, and 15 minutes after secretin injection three more blood samples were taken for measurement of serum gastrin levels. Because the gastrin peak was always found at five minutes after secretin injection, the fasting and five minutes' post-secretin gastrin level were used for calculation of the result.

In the meal stimulation test, fasting subjects ingested a standard test meal within 15 minutes. This meal consisted of one slice of bread, 50 g of cheese, one boiled egg, and 200 ml of milk, corresponding to 30 g of protein, 20 g of fat, and 25 g of carbohydrate. Blood samples were drawn before and 15, 30, 45, 60, 90, 120, and 150 minutes after the start of the meal for determination of serum gastrin levels. The fasting and the highest postprandial serum gastrin concentration was used for calculation.

Table 1 Features of 15 patients with Zollinger-Ellison syndrome

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Basal acid output (mmol H⁺/h)</th>
<th>Serum gastrin (ng/ml)</th>
<th>Gastrinoma (tissue diagnosis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>42</td>
<td>32.1*</td>
<td>620–960000</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>39</td>
<td>67.0</td>
<td>400–1150</td>
<td>18*</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>17</td>
<td>57.5</td>
<td>3100–21000</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>49</td>
<td>6.4*</td>
<td>530–750</td>
<td>18*</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>48</td>
<td>40.3</td>
<td>190–1490</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>61</td>
<td>35.5</td>
<td>1540–3280</td>
<td>18*</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>43</td>
<td>46.0</td>
<td>215–320</td>
<td>18*</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>70</td>
<td>pH 1.2</td>
<td>400–1300</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>26</td>
<td>60.0</td>
<td>530–850</td>
<td>18*</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>64</td>
<td>4.3*</td>
<td>10800–27100</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>38</td>
<td>12.5</td>
<td>250–380</td>
<td>18*</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>37</td>
<td>23.4</td>
<td>350–470</td>
<td>18*</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>50</td>
<td>15.4</td>
<td>142–196</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>40</td>
<td>19.2</td>
<td>140–252</td>
<td>18*</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>43</td>
<td>15.1</td>
<td>196–510</td>
<td>18*</td>
</tr>
</tbody>
</table>

Normal values (mean ± 1 SD) 2.3 ± 2.6 (n = 20) 66 ± 18 (n = 100)

*After partial gastrectomy.
†No laparotomy.
‡Nodular pancreas; no tissue diagnosis.
§Persistent raised serum gastrin levels after total gastrectomy.
In one ZE patient a secretin stimulation test was performed immediately after three hours' calcium infusion. The result of this test was compared with that of secretin administration under basal conditions in the same patient.

Serum gastrin levels were measured by radio-immunoassay using a rabbit antibody (Rehfeld et al., 1972; Lamers and van Tongeren, 1975). This antibody, raised against human gastrin I covalently coupled to bovine albumin, binds the gastrin components with an almost equimolar potency (Rehfeld et al., 1975). In 100 normal subjects the serum gastrin level was 66 ± 18 pg/ml (mean ± 1 SD).

Calcium, secretin, and meal stimulation tests were considered to be positive if serum gastrin level increased at least 50% of basal value. This criterion has proved to be of value in the differentiation between patients with and without ZE syndrome by calcium infusion (Lamers and van Tongeren, 1976).

Regression analysis was by the method of least squares with calculation of slope, regression coefficient, and intercept.

Results

Calcium infusion led to an increase in serum gastrin in all 15 ZE patients studied (Table 2; Fig. 1). In two patients, however, this test had to be considered negative, because only a slight rise in gastrin was observed.

Intravenous administration of secretin led to a rise in serum gastrin in all 15 ZE patients (Table 2; Fig. 2). In the two patients with a negative calcium provocation test secretin stimulated increase in serum gastrin was also less than 50% of basal value.

In none of the ZE patients was found the combination of a positive calcium test and negative secretin test or a negative calcium test and a positive secretin test.

Table 2 Calcium, secretin, and meal stimulated increase in serum gastrin in 15 patients with Zollinger-Ellison syndrome

<table>
<thead>
<tr>
<th>Patient</th>
<th>Increase in serum gastrin after stimulation by:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calcium</td>
<td>Secretin</td>
</tr>
<tr>
<td></td>
<td>pg/ml</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>690</td>
<td>138</td>
</tr>
<tr>
<td>3</td>
<td>7700</td>
<td>248</td>
</tr>
<tr>
<td>4</td>
<td>330</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>505</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>6275</td>
<td>254</td>
</tr>
<tr>
<td>7</td>
<td>470</td>
<td>147</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>400</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>80600</td>
<td>340</td>
</tr>
<tr>
<td>11</td>
<td>1120</td>
<td>295</td>
</tr>
<tr>
<td>12</td>
<td>620</td>
<td>177</td>
</tr>
<tr>
<td>13</td>
<td>404</td>
<td>258</td>
</tr>
<tr>
<td>14</td>
<td>395</td>
<td>228</td>
</tr>
<tr>
<td>15</td>
<td>490</td>
<td>96</td>
</tr>
<tr>
<td>Normal values</td>
<td>7 ± 12 (n = 15)</td>
<td>10 ± 18 (n = 15)</td>
</tr>
</tbody>
</table>
Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin

Fig. 2 Secretin stimulated serum gastrin levels in 15 patients with the Zollinger-Ellison syndrome and 34 normal subjects.

The percental increases in serum gastrin after calcium and secretin provocation in 11 ZE patients with basal gastrin levels of less than 1000 pg/ml are compared in Fig. 3. In these patients a good correlation was found between the rises in gastrin after both provocation tests ($r = 0.841; p < 0.01$).

In the comparison between the increases in serum gastrin after calcium and secretin in four ZE patients with basal serum gastrin levels of more than 1000 pg/ml, the gastrin response to calcium was found more pronounced in one, almost equal in two, and more marked after secretin in one (Table 2).

One (patient 1) of the two patients with negative calcium and secretin tests had a basal serum gastrin level of more than 1000 pg/ml, whereas the other patient (patient 8) had a fasting serum gastrin concentration of less than 1000 pg/ml at the time of study. The diagnosis of ZE syndrome was histologically proven in these two patients with negative provocation tests.

In one ZE patient the gastrin response to secretin under basal conditions was compared with the increase in serum gastrin after secretin administration at the end of a three hours' calcium infusion test. Calcium infusion led to a rise in serum calcium from 2.4 to 3.5 mmol/l and in serum gastrin from 350 to 970 pg/ml. This calcium test was immediately followed by intravenous administration of 1 U/kg. 30 s secretin GIH. The serum gastrin level rose from 970 up to 2500 pg/ml within five minutes (Fig. 4). When the patient had a secretin stimulation test under basal conditions the serum gastrin level increased from 440 to 990 pg/ml (Fig. 4).

Only one out of nine ZE patients without previous gastric surgery had a positive meal stimulation test, whereas the increase in gastrin in the other eight patients was less than 50% of basal level (Table 2; Fig. 5).

The incidence of false positive calcium and secretin tests and false negative meal tests in patients without ZE syndrome was studied in normal subjects, duodenal ulcer patients, patients with Billroth I and Billroth II antrectomy, total gastrectomy, and achlorhydria (Table 3). A more than 50% increase in serum gastrin after calcium infusion was found in three out of six patients with achlorhydria, but not in the other groups studied. None of the non-ZE patients had a positive secretin provocation test. A post-prandial increase in serum gastrin of less than 50% of basal value was found in three out of 12 normal controls and in two out of nine achlorhydric patients. In patients with antrectomy or total gastrectomy negative meal tests were frequently found in two out of nine patients with Billroth I antrectomy, in all seven patients with Billroth II antrectomy and
in all seven patients with total gastrectomy. All 16 duodenal ulcer patients had a post-prandial increase in serum gastrin of more than 50% of basal value (Table 3).

Calcium infusion was accompanied by gastric pain, heartburn, nausea, and vomiting in a small number of subjects and phlebitis of a forearm vein in one patient. No adverse reactions were observed after secretin administration or ingestion of the test meal.

Discussion

In this study the value of different provocation tests in distinguishing ZE patients from patients without gastrinoma has been evaluated.

A provocation test is valuable in the diagnosis of ZE syndrome if: (1) the number of false test results in ZE patients is small; (2) the number of false test results in non-ZE patients is small; (3) the test is easy and fast to perform; (4) the test has no or only minor adverse reactions.

Proviso

False negative calcium stimulation tests were found in two out of 15 ZE patients. The secretin stimulation test was also found to be negative in the same two patients with histologically proven gastrinoma.

Different hypotheses have been proposed in the literature to account for these negative stimulation tests in ZE patients, such as a low gastrin content of tumor and metastases (Walsh and Grossman, 1975), the influence of gastrectomy (Bonfils et al., 1974), and—as far as negative secretin tests are concerned—coexisting glucagonoma (Creutzfeldt et al., 1975). However, the exact reason for the negative stimulation tests in ZE patients has so far been obscure. Moreover, the frequency in the literature of negative stimulation tests in ZE patients is difficult to evaluate, because different amounts of provocative agents of different potency over different periods of time have been administered (Lamers et al., 1977).

Provocation tests are considered to be of clinical significance in patients with basal serum gastrin levels of less than 1000 pg/ml (Isenberg et al., 1973). When the percental increases in serum gastrin after stimulation with calcium and secretin are compared in ZE patients with fasting serum gastrin levels of less than 1000 pg/ml the correlation between the results is rather good (see Fig. 3). The slope of 1.01 in Fig. 3 indicates an almost equal potency of calcium and secretin, in the amounts used, to increase serum gastrin levels.

In ZE patients with markedly raised basal gastrin
levels of more than 1000 pg/ml the correlation between the rise in serum gastrin after both provocative agents was poor. The reason for the different sensitivity of the tumour to the two provocative agents is unclear.

In one ZE patient the rise in serum gastrin after secretin administration was more marked when this test was performed during hypercalcaemia after calcium infusion (see Fig. 4). From these data it may be concluded that the provocative agents are able to potentiate each other. Moreover, it is evident that calcium infusion does not lead to exhaustion of the tumorous gastrin content. Both in acute hypercalcaemia after calcium infusion (see Fig. 4) and in chronic hypercalcaemia, as in coexisting hyperparathyroidism and ZE syndrome, secretin is effective in increasing serum gastrin levels (Lamers et al., 1977). How far calcium or secretin administration stimulates not only the release but also the synthesis of gastrin by the tumour has still to be investigated.

It has been found by Berson and Yalow (1972), that patients with ZE syndrome show no or only minor increases in serum gastrin after ingestion of a protein-rich meal. These results are interpreted by the suggestion that extragastric tumorous gastrin, which forms the bulk of serum gastrin in the ZE syndrome, is not stimulated by ingestion of food (Berson and Yalow, 1972; Isenberg et al., 1973). Only one (patient 9) out of nine ZE patients without previous gastric surgery from this study had an increase in serum gastrin of more than 50% of basal value. Although this patient has not been operated on, the diagnosis of ZE syndrome was verified by the combination of a very high basal gastrin output, and positive calcium and positive secretin stimulation tests. Patients with non-tumorous hypergastrinaemia of antral origin with hyperchlorhydria have in general a lower basal acid output, negative calcium and secretin stimulation tests and a more pronounced increase in gastrin after a standard test meal in comparison with the results in this patient (Berson and Yalow, 1972; Straus and Yalow, 1975).

Thompson et al. (1975) described a post-prandial increase in serum gastrin of less than 50% in both ZE patients without previous gastric surgery studied, whereas Creutzfeldt et al. (1975) found a more than 50% increase in gastrin in the two unoperated ZE patients from the series. The reason for the marked increase in serum gastrin after a test meal in some ZE patients is not clear. Several mechanisms may be put forward to account for the pronounced meal stimulated increase in serum gastrin in these patients, as direct interaction between food and a tumour originated in the duodenal wall, the release of a gastrin stimulating agent—for example, secretin—from the small intestine and co-existing antral G-cell hyperplasia and pancreatic tumours (Polak et al., 1972). One of the ZE patients with marked increase in serum gastrin after ingestion of food described by Creutzfeldt et al. (1975) has been operated on and a duodenal wall tumour was found. A better understanding of the factors responsible for the food stimulated rise in serum gastrin in some ZE patients is of considerable pathophysiological interest.

Fig. 5 Meal stimulated serum gastrin levels in nine patients with the Zollinger-Ellison syndrome without previous gastric surgery and in 12 normal controls.
in three out of six patients with achlorhydria, but in none of the other non-ZE patients. False positive secretin tests were not observed. The secretin test is more valuable than the calcium test because this test differentiates between hypergastrinaemia of antral and tumorous origin. In patients with hypergastrinaemia of antral origin administration of secretin usually leads to a decrease in serum gastrin, as in achlorhydria (Korman et al., 1973b; Lamers et al., 1977), excluded gastric antrum (Korman et al., 1972b), non-tumorous hypergastrinaemic hyperchlorhydria (Straus and Yalow, 1975), and postprandial conditions (Thompson et al., 1972b). In patients with achlorhydria and excluded gastric antrum, marked increases in serum gastrin after calcium infusion have been found (Straus and Yalow, 1975; Lamers and van Tongeren 1976).

Increases in serum gastrin of less than 50% of basal value after a standard test meal were found in patients of all groups without gastrinoma, except for duodenal ulcer patients who all showed marked rises in serum gastrin after ingestion of food. Because the meal stimulated rise in serum gastrin in ZE patients with partial or total gastrectomy is often more than 50% of basal value (Thompson et al., 1972; Creutzfeldt et al., 1975; Thompson et al., 1975) and the increase in gastrectomised patients without gastrinoma is often less than 50% of basal gastrin level, it may be concluded that meal stimulation tests help to differentiate ZE patients from non-ZE patients only in cases without previous gastric surgery.

PROVISO 3

The secretin stimulation test takes only five to 20 minutes, whereas the calcium stimulation test takes three hours and the meal stimulation test 24 hours. The secretin test is easy to perform because only one intravenous injection and no infusion is needed.

PROVISO 4

The calcium stimulation test was accompanied by moderate complaints in a small group of patients, whereas no untoward reactions to secretin or to the standard test meal were observed. Because of the risk of complications as a result of the long-standing calcium stimulated gastric acid secretion, gastric aspiration may be needed in ZE patients during and after the calcium infusion. Moreover, the calcium load may be dangerous in elderly patients and in patients with pre-existing hypercalcaemia.

It can be concluded from this study that the secretin stimulation test should be recommended as provocation test of first choice in equivocal cases of ZE syndrome.

The authors are indebted to Professor Dr Jens Rehfeld (Aarhus) and Dr Flemming Stadil (Copenhagen, Denmark) for the gastrin antiserum used in this study. Dr K. Huibregtse and Dr G. Tijtgat (Amsterdam) and Dr H. Verkooyen (Nijmegen) were helpful in the investigation of their Zollinger-Ellison patients.

References

Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin

Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin to the diagnosis of the Zollinger-Ellison syndrome.

C G Lamers and J H Van Tongeren

Gut 1977 18: 128-135
doi: 10.1136/gut.18.2.128