Ultrasonic scanning in pancreatic disease

J. G. B. RUSSELL, A. G. VALLON, JOAN M. BRAGANZA, AND H. T. HOWAT

From the Department of Radiology and University Department of Gastroenterology, Manchester Royal Infirmary, Manchester

SUMMARY We have analysed retrospectively the pancreatic ultrasound scans (using a bistable machine) in 138 consecutive patients, and have related the results to the clinical status and the final diagnosis in each case. The scans were read without knowledge of the patient’s clinical state. When technically unsatisfactory scans were excluded from consideration, the overall diagnostic accuracy of ultrasonography proved to be 82%, with a false positive rate of 8%. The scan was abnormal in all 10 patients with cancer of the pancreas: a positive diagnosis of cancer was made in six. All patients with chronic pancreatitis in relapse had abnormal scans, but in 53% the scans were normal in patients in whom the disease was in clinical remission. In seven patients with chronic pancreatitis who suffered relentless pain, the head of the pancreas was swollen and contained cystic areas or emitted abnormal echoes. In acute pancreatitis ultrasonic scanning proved useful in following the progression of the disease to final resolution, or to development of complicating pseudocyst, abscess, or ascites. Random echoes in the early stages of acute pancreatitis are features of haemorrhagic necrosis. In alcoholic relapsing pancreatitis the persistence of abnormal echoes, disposed linearly along the axis of major ducts, suggests the presence of chronic pancreatitis.

Since the earliest reports on the use of ultrasound to assess the pancreas (Engelhart and Blauenstein, 1970; Filly and Freimanis, 1970; Russell 1972) there have been many reviews of its value in established pancreatitis (Lutz et al., 1976; Doust and Pearce, 1976), and in pancreatic tumours (Lanz, 1975; Rettenmaier, 1975). Few reports analyse the place of pancreatic ultrasonography (USS) in investigating the patients who present with features which suggest pancreatic disease. In particular, the significance of a normal ultrasonic scan is unclear.

Methods

Patients

We have analysed retrospectively the results of pancreatic ultrasonography in 138 consecutive adult patients referred for examination from 1971 to March 1977. At the time of referral all patients were suspected on clinical grounds to be suffering from pancreatic disease or its complications. Four patients were excluded because of inadequate follow-up.

The scans, recorded on Polaroid film, were read in the absence of knowledge of the clinical situation, and the interpretation made at that time was related to the clinical status of the patient and the final diagnosis made with the relevant ancillary investigations including pancreatic function tests.

All the patients were examined without prior preparation on a Kretz Combison B-scanning bistable machine (a frequency of 1.5 or 2.25 MHz is used). Although a grey scale machine was available during the latter part of the review period, the less sophisticated Kretz machine is preferred in suspected pancreatic disease because of the better manoeuvrability of the transducer and the convenience of its controls, and because of the more positive demonstration of the pancreatic outline with a bistable presentation.

Examinations early in the series were associated with a high failure rate (Fig. 1), usually because of inability to demonstrate the pancreas convincingly. In 1975 we began to use the method of three-dimensional reconstruction (Petri et al., 1975). With the patient supine and the scan plane vertical, sections are taken both sagittally and transversely, the former usually at 2 cm intervals, the latter at 1 cm or even 0.5 cm intervals. In this way the pancreas is visualised in its three dimensions, and, if helpful, the image is drawn. This method led immediately to a reduction in the failure rate (Fig. 1), an increased reliance by clinicians on the method, and, as a result, to a substantial increase in the number of patients referred.

Received for publication 25 May 1978
Fig. 1 Number of patients undergoing pancreatic scanning. The proportion of unreadable scans is demonstrated. Note that this proportion has fallen substantially in recent years, and that the number of scans has increased since 1973 (the figures for 1977 include only three months).

The initial sagittal scans identify the level of the pancreas and reveal gross abnormalities in the pancreatic area or elsewhere in the upper abdomen. The pancreas is then carefully delineated in transverse scans. Further refinements—prone scans, oblique supine scans, or sections with a sloping scan plane—are also used, but are needed in only a minority of patients.

NORMAL PANCREAS (Tables 1, 2)
The ultrasonic appearances of the normal pancreas show the recognised wide variation in pancreatic dimensions. In the great majority of cases the diameter of the head does not exceed 30 mm and 20 mm in the body and tail (Weill et al., 1977). Any normal variation in size is gradual, and, conversely, an unexpectedly abrupt variation in contour, even if the size remains within normal limits, becomes significant (Fig. 2).

The pancreas reflects less sound than surrounding tissue, and with available machines the duct system is not seen within the glands in normal patients.

Pancreatic disease was excluded in 42 patients after careful scrutiny of all the relevant information including, where available, the findings at laparotomy or necropsy (Table 1). Scan reports in the various disease categories which comprised this control group are given in Table 2. The scan was normal in 35 (83%) of the whole group, abnormal in three (7%), and unreadable in four (10%), while in the 15 of the control patients in whom the pancreas was assessed at laparotomy or necropsy the scan was normal in 14 (94%) and abnormal in one (6%). An enlarged pancreas on ultrasonography was found in three patients—one patient with gallstones, a second with eosinophilic gastroenteritis who regularly took opiates for his abdominal pain, and the third, a chronic alcoholic with cirrhosis of the liver. Secretin-pancreozymin tests were normal in all three patients. In the patient with hepatic cirrhosis, a repeat examination done six months later showed (Fig. 3) that the size of the pancreas was smaller than previously, suggesting resolution of a pathological process. The patient is symptom free at the present time.

PATHOLOGICAL PANCREAS (Table 1)
Patients with pancreatitis were classified at the time of discharge from hospital according to criteria defined by the Marseille Symposium (Sarles, 1965).

ACUTE PANCREATITIS (45 patients (Table 3))
Patients were first examined at varying intervals

Table 1 Clinical findings in 134 patients

<table>
<thead>
<tr>
<th>Clinical diagnosis</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal pancreas</td>
<td>42</td>
</tr>
<tr>
<td>Acute pancreatitis</td>
<td>45</td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>32</td>
</tr>
<tr>
<td>Fibrocystic disease of pancreas</td>
<td>1</td>
</tr>
<tr>
<td>Radiation fibrosis of pancreas</td>
<td>1</td>
</tr>
<tr>
<td>Cancer of pancreas</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
</tr>
</tbody>
</table>

Table 2 Scan reports in various disease categories

<table>
<thead>
<tr>
<th>Final diagnosis</th>
<th>No. of patients</th>
<th>Normal</th>
<th>Unreadable</th>
<th>Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptic ulcer</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gastritis</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Irritable bowel syndrome</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Biliary disease</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cirrhosis of liver</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>13</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>35(83%)</td>
<td>4(10%)</td>
<td>3(7%)</td>
</tr>
<tr>
<td>Laparotomy or necropsy</td>
<td>15</td>
<td>14(94%)</td>
<td>0</td>
<td>1(6%)</td>
</tr>
</tbody>
</table>
Ultrasonic scanning in pancreatic disease

after the onset of the acute episode. Uniform enlargement of the whole pancreas, which was clearly defined and with fewer echoes from within the pancreas than normal, were the characteristic features at ultrasonography (Fig. 4). These changes could take days or weeks to settle. Although in general the scan appearances corresponded to the clinical assessment of the disease, there were instances when the pancreas remained enlarged despite clinical recovery and return to normal of the serum amylase. In these patients ultrasonic scanning was repeated at intervals until the scan returned to normal, or a complication of acute pancreatitis became obvious. Cysts or pseudocysts commonly were apparent by the fourth week but were occasionally seen earlier (Table 3), and pancreatic abscess was diagnosed in two patients (Fig. 5). In two patients with penetrating duodenal ulceration ultrasonography demonstrated focal enlargement of the head of the pancreas. At laparotomy the pancreas was considered normal in both patients and at follow-up six months after vagotomy and pyloroplasty both remain well.

The abnormal echoes in seven patients in the acute pancreatitis group can be divided into four cases with random echoes and three cases in which the echoes were linearly disposed along the long axis of the main pancreatic duct. We tentatively attribute random echoes to areas of pancreatic necrosis. Of the four patients with these, one who was scanned on the fourth day died on the tenth day with acute haemorrhagic necrosis, the second developed a pancreatic abscess, and the third a large pseudocyst. In the fourth, ultrasonography initially done on the ninth day was normal when repeated at the eighth week. The three patients with linear echoes have been followed for two years. In one patient ultrasonography was repeated at the sixth week; it was normal and he remains well. Of the other two, both with alcoholic relapsing pancreatitis, one was proved at laparotomy two years later to have histological evidence of early chronic pancreatitis, while the other, again two years later, despite clinical quiescence on abstaining from alcohol, has developed some impairment of exocrine pancreatic function.
These two patients more appropriately should now fall into the diagnostic category of alcoholic relapsing chronic pancreatitis.

CHRONIC PANCREATITIS (32 patients (Tables 1, 4, 5))
A diagnosis of chronic pancreatitis was confirmed at laparotomy in 17 patients; diffuse pancreatic calcification was demonstrated radiologically in approximately one-third of the 32 patients. Eleven patients had clinical features of chronic pancreatitis and abnormal secretin pancreozymin tests. Thirty-one of the 32 patients had typical attacks of relapsing chronic pancreatitis; one patient had never experienced any abdominal pain.

Fifteen patients were examined during a phase of clinical remission. This includes one patient with silent chronic pancreatitis (Table 4). Ultrasonographs were usually normal in the absence of calculi, but when these were present abnormal randomly distributed echoes could be detected. The size of the gland was occasionally increased in some patients who were symptom free, while in advanced disease the size was often reduced. In this sub-group of 15 patients in remission ultrasonography was abnormal in seven (47%) and normal in eight (53%).

Within eight weeks of a relapse (Table 5) ultrasonography showed an enlarged pancreas which often emitted abnormal linear echoes, representing dilatation of the main pancreatic duct (Fig. 6). Of the seven patients who suffered unremitting abdominal pain, in six the head of the pancreas was found to be specially enlarged and contained cystic areas or emitted abnormal echoes (Table 5). These findings were confirmed at major pancreatic surgery, which was required in all seven patients. In this sub-group of 17 symptomatic patients ultrasonographs were abnormal in 14 (82%), and unreadable in three (18%).

In a patient with fibrocystic disease, the tail of the pancreas was found to be slightly enlarged and more distinct than usual, while the size of the pancreas...
Ultrasonic scanning in pancreatic disease

Table 3 Acute pancreatitis

Table 4 Chronic pancreatitis in remission

Table 5 Chronic pancreatitis in relapse

was generally reduced in a patient who had received previously radiotherapy to the para-aortic glands (Table 1).

Cancer of pancreas (13 patients (Table 6))

Ultrasonographs were abnormal in 10 of 13 patients, three scans were unreadable. When a focal transonic swelling sufficiently large to indent contiguous structures was found, a firm diagnosis of cancer (rather than a cyst) could be made because of the indistinct outline of the neoplastic mass (Fig. 7) and its increased sonic reflectivity (six patients); in one patient the appearances were considered to be more typical of a cyst than cancer, however (Fig. 8). In three patients with uniform enlargement of the gland the appearances on ultrasonography could not be differentiated from those of pancreatitis.

Discussion

With experience the pancreas can be visualised using ultrasound in the great majority of cases. Walls et al., (1975) have previously described the ultrasonic findings of the abnormal pancreas. If the pancreas is acutely involved, either by an acute inflammation or as an exacerbation of chronic pancreatitis disease, then it will be seen to be enlarged, and a reversion to normal size does not occur while clinical activity persists. In acute pancreatitis the gland is more clearly defined and gives rise to even fewer echoes than the normal organ. Serial examinations allow early identification of complicating cysts, pseudocysts, abscess, or ascites, and their progress. A pancreas damaged to such a degree as to have an abnormal secretin pancreozymin test (chronic pancreatitis) frequently will show evidence of duct dilatation seen as linear echoes. Although in this retrospective study pancreatic calculi were usually associated with random rather than linear echoes, in practice it is not possible to distinguish reliably the echoes from those of associated duct dilatations. Focal enlargement of the pancreas can be due to a focus of pancreatitis, cyst, abscess, or cancer. Apart from the size and ultrasonic appearance of the enlargement and of the remainder of the gland, the clinical presentation inevitably colours the diagnosis.

In the past two years, failure to demonstrate the pancreas for technical reasons has occurred but rarely. In assessing the overall diagnostic accuracy of ultrasonography it seems legitimate therefore to
exlude the unreadable scans. These mainly occurred in the earlier part of the review period (Fig. 1). When experience had been gained the overall diagnostic accuracy of 82% (Table 7) then compared with the 84% accuracy in the study of Walls et al. (1975). The increased incidence of false negative scans, 23%, compared to 8.5% in the study of Walls et al. (1975), may be related to inclusion in our study of patients with chronic pancreatitis in remission in whom a 53% incidence of normal scans occurred, as has
Ultrasonic scanning in pancreatic disease

Table 6 Cancer of pancreas

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Results of scan</th>
<th>Details of scan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Unreadable</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 7 Diagnostic accuracy of ultrasonography

<table>
<thead>
<tr>
<th>Final diagnosis</th>
<th>No. of patients examined</th>
<th>No. of patients excluding unreadable scans</th>
<th>Ultrasonography diagnosis</th>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal pancreas</td>
<td>42</td>
<td>38</td>
<td>35</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Acute pancreatitis</td>
<td>45</td>
<td>36</td>
<td>26</td>
<td>10*</td>
<td></td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>32</td>
<td>29</td>
<td>29</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fibrocystic disease of pancreas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Radiation fibrosis of pancreas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cancer of pancreas</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
<td>115</td>
<td>94</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Overall diagnostic accuracy if unsatisfactory scans excluded: 94/115 (82%)
False positive: 3/38 (8%)
False negative: 18/77 (23%)
False negative in chronic pancreatic disease: 8/41 (19-55%)
* The timing of scanning is of critical importance in acute pancreatitis. Thus, in these 10 patients a normal scan does not indicate an incorrect diagnosis, but that the pancreas has already returned to normal.

previously been reported (Doust and Pearce, 1976). If patients with acute pancreatitis are omitted from this assessment (whether the scan is normal or abnormal in these individuals, depends on the degree of restitution of the gland to normal), the overall diagnostic accuracy is 86%. These results and those reported by Walls et al. (1975), in both of which studies a bistable machine was used, are similar to the results of an investigation in which grey-scale imaging was employed (Doust and Pearce 1976). It must be stressed that, in our series, unlike these other studies, no clinical information was made available when the scans were read.

The low (8%) incidence of abnormal ultrasonography in patients with non-pancreatic abdominal diseases in this study (Tables 2, 7) suggests that ultrasonography will prove specially useful as a screening test of patients suspected of pancreatic disease. However, although, the scan was usually abnormal in patients with active pancreatitis and cancer, it was often normal in patients with proven chronic pancreatitis when the disease was in clinical remission (Table 4). Despite a normal scan in these cases, it may therefore be necessary to undertake further pancreatic studies. In investigating pancreatic disease, results must be considered complementary, not mutually exclusive. When possible, the ultrasonograph should be made during a relapse, when, in our experience, no false negatives occurred (Table 5).

Although a degree of overlap is inevitable, the morphological appearances of acute pancreatitis, chronic pancreatitis, and cancer were often sufficiently distinctive to permit a specific diagnosis to be made by ultrasonography. To the role of ultrasonography in prospective screening of patients for pancreatic disease must be added its potential usefulness in differential diagnosis of the various pancreatic pathologies, and its use in following the progression of pancreatic necrosis lesions to final resolution or to development of complications. That ultrasonography is both non-invasive and without hazard is equally of benefit to both patient and doctor.

We thank the Department of Medical Illustration, Manchester Royal Infirmary for the final preparation of the figures.

References

Ultrasonic scanning in pancreatic disease.

J G Russell, A G Vallon, J M Braganza and H T Howat

Gut 1978 19: 1027-1033
doi: 10.1136/gut.19.11.1027

Updated information and services can be found at:
http://gut.bmj.com/content/19/11/1027

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Pancreas and biliary tract (1949)
- Pancreatitis (531)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/