Trypsin and lactoferrin levels in pure pancreatic juice in patients with pancreatic disease

S. S. FEDAIL, R. F. HARVEY1, P. R. SALMON, P. BROWN, AND A. E. READ

From the University Department of Medicine, Bristol Royal Infirmary, and Department of Gastroenterology, Frenchay Hospital, Bristol

SUMMARY Levels of immunoreactive trypsin were measured in pure pancreatic juice obtained endoscopically from 44 patients with suspected pancreatic disease. Patients with pancreatic cancer all had low trypsin concentrations (median 3-6 μg/ml, range 0-6-12-0), but those with chronic pancreatitis had very variable levels (median 14-2 μg/ml, range 3-2-76-8), showing a considerable overlap with patients without pancreatic disease (median 37-1 μg/ml, range 10-4-66-0). When levels of lactoferrin in pancreatic juice were measured, all patients with chronic pancreatitis were found to have much higher levels (all greater than 900 ng/ml) than control subjects or patients with pancreatic cancer (all less than 400 ng/ml). The combined measurement of trypsin and lactoferrin in pure pancreatic juice appeared to be more promising than any other currently available test for the separation of patients with pancreatic cancer from those with chronic pancreatitis.

There is now an immunological method for measuring trypsin which measures trypsin-like immunoreactivity rather than catalytic activity. It can therefore measure both trypsin and trypsinogen, and is not affected by the presence of trypsin inhibitors. It is also more sensitive than the catalytic methods used before (Temler and Felber, 1974).

We have previously shown that the measurement in pure pancreatic juice of the iron binding protein lactoferrin is useful in the diagnosis of pancreatic diseases (Fedail et al., 1978). Lactoferrin estimation can differentiate patients with chronic pancreatitis from controls and patients with pancreatic cancer. In the search for another parameter to help to differentiate cancer from controls we measured trypsin, as previous workers have shown that in pancreatic cancer enzyme output is usually more affected than in chronic pancreatitis (Burton et al., 1960; Wormsley, 1969).

Methods

Trypsin assay was performed using the Hoechst Pharmaceutical/Behring Institute radioimmunoassay kit, which is now commercially available in the UK and Europe. With this kit the standards and radioiodinated trypsin are prepared from highly purified human pancreatic tissue and the antisera raised in rabbits. A double antibody method is used to separate free from antibody-bound trypsin. The

1Correspondence to Dr. R. F. Harvey.

Received for publication 29 June 1979.
method measures both trypsin and trypsinogen, so is suitable for use with pure (inactivated) pancreatic juice. The performance of the kit has been assessed by Elias et al. (1977). It was found to be reliable and the results were reproducible.

Our findings as regards reproducibility were similar to theirs, with a within-assay variation of 4-6% and between-assay variation of 10.4%. Storage of samples of pure pancreatic juice at −20°C for periods of up to three months did not appear to affect measured trypsin levels, and no preservatives or enzyme inhibitors—for example, aprotinin—were added to stored samples.

The radioimmunoassay for lactoferrin was as previously described (Fedail et al., 1978). Pure pancreatic juice was collected after selective pancreatic duct cannulation, 5–10 ml usually being obtained over two minutes after intravenous injection of 1 clinical unit/kg body weight of secretin (Boots, Nottingham, England). Because of the high trypsin content of pancreatic juice, samples were diluted 1:10 in phosphate buffered saline before assay. Forty-seven patients who had been referred for the investigation of clinically suspected pancreatic disease were studied. Cannulation of the pancreatic duct was impossible in three patients (two later shown to have a normal pancreas, one to have chronic pancreatitis), leaving 44 for study. Twenty-four were eventually shown to have chronic pancreatitis, the diagnosis being established by two or more of the following criteria: abnormal endoscopic retrograde pancreatography (ERP) (Kasugai et al., 1972), abnormal secretin test (Dreiling and Janowitz, 1962), and abnormal Lundh test meal (Mottaleb et al., 1973). ERP was abnormal in all but two of these patients, and both of these had abnormal secretin and Lundh tests. There were 10 patients with cancer of the head of the pancreas, the diagnosis in all cases being confirmed by cytology, histology, or both. Ten subjects who had no radiological or biochemical evidence of pancreatic disease were regarded as a control group.

Results

The median trypsin concentrations in controls were 37.05 μg/ml (range 10.4–66.0), patients with chronic pancreatitis 14.2 μg/ml (range 3.2–76.8), and in patients with pancreatic cancer 3.6 μg/ml (range 0.6–12.0) (Fig. 1)

Using the Wilcoxon rank sum test for unpaired samples, the difference between controls and chronic pancreatitis was barely significant (p < 0.05), and there was a considerable overlap in trypsin levels. Trypsin concentration was also significantly lower in cancer than in pancreatitis (p < 0.01). When lactoferrin and trypsin measurements were combined, an interesting pattern emerged (Fig. 2). The lactoferrin level effectively separated patients with chronic pancreatitis (all of whom had levels of 900 ng/ml or more) from those with pancreatic cancer or controls (all of whom had levels less than 400 ng/ml). Of those who did not have raised lactoferrin levels, the trypsin estimation separated all but one of the ‘control’ subjects from those with pancreatic cancer. As previously reported, one subject with low levels of trypsin and raised levels of lactoferrin had developed carcinoma of the pancreas after having had chronic pancreatitis for many years.

Discussion

There was considerable overlap in the pancreatic juice trypsin levels in the three groups, but patients with pancreatic cancer had uniformly low levels of trypsin.

The reason for the low trypsin in pancreatic cancer is not clear. It is not due to a smaller volume of secretion, as in this series no differences were noted between patients with cancer and pancreatitis in the volumes collected in the first two minutes after secretin stimulation. The pancreatic duct was outlined in all cases of pancreatic cancer. Four of them
Trypsin and lactoferrin levels in pure pancreatic juice in patients with pancreatic disease

had a stricture in the region of the head of the pancreas; some patients with chronic pancreatitis, however, also had strictures but did not have a low trypsin concentration. The low trypsin may in part be due to malnutrition as a result of the severe anorexia from which most of these patients suffer, or else to a non-specific effect of malignant disease on protein metabolism.

None of the currently available tests can reliably differentiate pancreatic cancer from chronic pancreatitis. This is true of endoscopic pancreatography (Salmon, 1978), ultrasound examination (DiMagno et al., 1977), computer-assisted tomography (Go et al., 1978), and even laparotomy (Gambil, 1971; Trapnell, 1971). The results of the present study indicate that the estimation of lactoferrin in pure pancreatic juice is an excellent test for chronic pancreatitis, and that the combined measurement of lactoferrin and trypsin may be of additional diagnostic value in suspected pancreatic disease.

The most obvious limitation to the use of this test as a diagnostic aid is the need to obtain pure pancreatic juice by endoscopic cannulation. Studies are currently in progress in our laboratory to determine whether measurements of lactoferrin and trypsin in duodenal juice give similar diagnostic information. If so, as duodenal juice is much easier for most people to obtain, this might considerably increase the value of such measurements.

This investigation was supported by the National Cancer Institute, D.H.E.W., grant number 5 R26 CA 19167-02 SRC; and by Hoechst UK Ltd. We are grateful to Dr. R. H. Roussel, Dr. L. Benini, and Ms. Christiane Neumann for their advice and practical help, and Dr. John Williams, Department of Molecular Enzymology, University of Bristol, for generous supplies of lactoferrin.

References


Kasugai, T., Kuno, N., Kizu, M., Kobayashi, S., and Hattori, K. (1972). Endoscopic pancreatococholangiography. 2. The pathological endoscopic pancreato-


Trypsin and lactoferrin levels in pure pancreatic juice in patients with pancreatic disease.
S S Fedail, R F Harvey, P R Salmon, P Brown and A E Read

Gut 1979 20: 983-986
doi: 10.1136/gut.20.11.983

Updated information and services can be found at:
http://gut.bmj.com/content/20/11/983

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Pancreas and biliary tract (1949)
Pancreatitis (531)
Pancreatic cancer (660)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/