Increased incidence of faecal coliforms with \textit{in vitro} adhesive and invasive properties in patients with ulcerative colitis

R J DICKINSON,* S A VARIAN, A T R AXON, AND E M COOKE

From the Gastroenterology Unit, The General Infirmary at Leeds, and the Department of Microbiology, University of Leeds, Leeds

SUMMARY Faecal samples were collected from 23 patients with active ulcerative colitis, 15 patients with established ulcerative colitis in remission, 20 patients with active colitis of cause other than ulcerative colitis, and 20 normal control subjects. Ten coliform colonies were randomly selected from the faecal sample cultures and serotyped before the testing of each different serotype from each sample for adhesive or invasive properties on HeLa cell monolayers. In the patients with both active ulcerative colitis and ulcerative colitis in remission and those with other types of colitis one serotype tended to dominate the faecal coliform flora. In normal controls more variety was encountered. Thirty-five per cent of the patients with active ulcerative colitis and 27\% of the patients with ulcerative colitis in remission had at least one adhesive or invasive faecal coliform as compared with 5\% of the patients with other types of colitis and 5\% of the normal controls. These findings are significant ($p < 0.05$) and may have aetiological and therapeutic significance.

The aetiology of ulcerative colitis remains unknown. The characteristic inflammation in the disorder usually affects varying extents of the large intestinal mucosa, which is the area of the intestine most intimately associated with the aerobic flora.1 In spite of this fact, there has been little published work on the qualitative aspects of the aerobic faecal flora apart from that of Cooke (1968) who showed differences in the faecal \textit{E. coli} of patients with ulcerative colitis compared with controls in respect to production of haemolysin and necrotoxin and the ability to dilate rabbit ileal loops.2

The possibility that the coliform flora is involved in the aetiology of ulcerative colitis is increased by the observation that \textit{E. coli} may act as a primary pathogen in the bowel3, 4 as may other coliforms in some situations.4, 5 Furthermore, there is much anecdotal evidence relating the onset of ulcerative colitis and its exacerbations to attacks of infective diarrhoea, a proportion of which may be caused by pathogenic coliforms.3, 3, 4

In this study we have investigated the possibility that there are qualitative differences in the faecal coliforms of patients with ulcerative colitis. In particular we have investigated faecal coliforms for adhesive and invasive properties, both of which appear to relate to the ability of enteric pathogens to produce disease.6, 7 For comparison we have studied the coliforms of patients with colitis thought to be due to disease other than ulcerative colitis and normal controls.

Methods

Patients

Faecal samples were obtained from the following groups of patients.

\textit{Active ulcerative colitis}
Twenty-three patients with active proctitis or proctocolitis all of whom had symptoms of their disease. Twenty patients were in hospital and in all cases the diagnosis was made according to accepted criteria.8

\textit{Quiescent ulcerative colitis}
Fifteen out-patients with established ulcerative colitis in clinical remission. One of these patients had been studied three months previously in group 1.
Other active colitis

Twenty patients with active colitis thought to be due to conditions other than ulcerative colitis. In all cases the diagnosis was based on the clinical history and findings, taken in conjunction with the results of routine bacteriological, radiological, and histological investigations. Five had Crohn's disease of the colon, six antibiotic related colitis or pseudomembranous colitis and three infective colitis with recognised pathogens. The other six all had a short history of diarrhoea of sudden onset, and, although no intestinal pathogens were identified, an infective cause for the colitis was considered most probable on clinical and investigational grounds. No patient in this group had the rectal findings of ulcerative colitis.

Normal controls

Twenty adults who had neither been in hospital nor received antibiotics for at least one year.

Procedure

Faecal samples were obtained as soon as possible after the presentation of the patient to hospital. The samples were inoculated on to blood agar and incubated overnight at 37°C.

A typical coliform colony was then randomly selected and identified as E. coli or Klebsiella species as previously. This colony and nine others similarly selected were then stored on Dorset Egg medium at room temperature in the dark until use.

The E. coli and klebsiellas studied were from the first faecal sample obtained, except in the case of a patient with bacteriological evidence of staphylococcal enterocolitis who had no faecal coliforms until five days after admission.

SEROTYPING

E. coli were 0-serotyped and klebsiellas capsular typed as previously, using 156 0 antisera and 77 capsular antisera respectively. Every colony from each sample was serotyped and then at least one representative of each different serotype from each faecal sample was tested for its ability to adhere to or invade HeLa cells in culture.

HELA CELL STUDIES

Adhesiveness and invasiveness were investigated on HeLa cell monolayers after the method of La Brec et al. (1964).

HeLa Ohio cells were maintained in tissue culture in Minimum Essential Medium (Glasgow's modification of Eagle's medium). Immediately before use each 150 ml of medium were enriched with 20 ml tryptose phosphate broth, 20 ml calf serum, 2 ml glutamine solution (containing 29.2 mg glutamine/ml), and 10 ml 3% sodium bicarbonate. The stripping medium comprised 100 ml phosphate buffered saline (PBS—pH 7.2) containing 2 ml 1% versene, 0.5 ml trypsin, and 3.5 ml 3% sodium bicarbonate.

The test HeLa cells (approximately 10⁶) were transferred to plastic petri dishes containing glass coverslips and maintained in an atmosphere of 95% air, 5% CO₂ at 37°C until nearly confluent. The cells were then infected with approximately 3.5 X 10⁸ washed bacteria obtained from overnight incubation in nutrient broth. The petri dishes were reincubated at 37°C in an atmosphere of 95% air, 5% CO₂, and coverslip samples were taken at three, five, and seven hours, and sometimes 10, 12, and 18 hours after infection. Before taking coverslip samples the petri dishes were emptied of culture medium and washed twice with Hank's balanced salt solution. Fresh medium was then added and the petri dishes reincubated. The coverslip samples were washed in PBS, fixed in three parts methanol: one part acetic acid, and stained with dilute Giemsa at pH 7 before examination under the light microscope.

Non-adhesive and non-invasive strains were usually not evident on any of the coverslip preparations. Scattered bacteria or bacterial clumps unrelated to the cell membranes were also regarded as negative. Adhesive strains had attached to the cells within three hours, usually in a patchy distribution. Adhesion increased variably with further incubation but invasion of the monolayer and its consequent disruption did not occur, even if incubation was prolonged up to 12 hours after infection (Fig. 1). Invasive strains usually affected the entire monolayer in a pattern initially similar to that of the adhesive strains. After five hours' incubation bacteria could usually be seen within the cells and, by seven hours, disruption of the monolayer had invariably occurred (Fig. 2).

All strains deemed adhesive or invasive were tested at least twice and categorisation was based on the agreement of two observers one of whom was unaware of the clinical diagnosis.

Results

The results of this study are summarised in Tables 1, 2, and 3. In all but one patient, the 10 coliform colonies were identified as E. coli. In the exceptional case all the colonies were Klebsiella and these comprised three different serotypes.

It will be seen that the faecal samples from all the patients with active colitis of whatever cause and from those with quiescent ulcerative colitis yielded generally fewer serotypes than those from the normal controls. Furthermore, differences in serotype among the 10 colonies from the patients with
active colitis and quiescent ulcerative colitis were often from typable to rough or non-typable and possibly therefore variants of the same strain. This occurred less frequently in the normal controls who yielded a wide variety of serotypes.

Adhesive or invasive serotypes were encountered at an increased frequency in the patients with active ulcerative colitis and quiescent ulcerative colitis when compared with the patients with other colitis or normal controls ($p<0.05$ in both instances by Fisher's test). The adhesive or invasive strains were usually representative of the dominant serotype, although one patient with active ulcerative colitis had two adhesive strains one of which,

E.coli 0153, was represented by a single colony.

Discussion

In any study of the faecal flora there are inevitable questions concerning the validity of results obtained at bacteriology. The bacterial population of the flora is so large that the sampling methods used must be reliable before any deductions can be made relating laboratory findings to the pathogenesis of

Table 1
Details of diagnostic groups, number of serotypes isolated, and frequency of adhesive or invasive strains

<table>
<thead>
<tr>
<th>Diagnostic group</th>
<th>No. of patients</th>
<th>No. of serotypes tested</th>
<th>No. of adhesive serotypes</th>
<th>No. of invasive serotypes</th>
<th>Mean no. serotypes/sample</th>
<th>% patients with adhesive or invasive serotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active UC</td>
<td>23</td>
<td>33</td>
<td>6*</td>
<td>3</td>
<td>1-4</td>
<td>35*</td>
</tr>
<tr>
<td>Quiescent UC</td>
<td>15</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>1-3</td>
<td>27</td>
</tr>
<tr>
<td>Other colitis</td>
<td>20</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>1-3</td>
<td>5</td>
</tr>
<tr>
<td>Normal control</td>
<td>20</td>
<td>37</td>
<td>0</td>
<td>1</td>
<td>1-9</td>
<td>5</td>
</tr>
</tbody>
</table>

*One patient had two adhesive serotypes in one sample.
Table 2 **Detail of O serotype of E.coli and capsular type of species Klebsiella in each group of patients studied (dominant serotype given first)**

<table>
<thead>
<tr>
<th>Active UC (n=23)</th>
<th>Other colitis (n=20)</th>
<th>Quiescent UC (n=15)</th>
<th>Controls (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR 019</td>
<td>OR 053</td>
<td>OR 01, 016, OR 01</td>
<td></td>
</tr>
<tr>
<td>OR 021</td>
<td>06</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>OR 0153</td>
<td>075, ONT</td>
<td>086, ONT 04</td>
<td></td>
</tr>
<tr>
<td>OR 087</td>
<td>OR, ONT</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>OR 018ab</td>
<td>083</td>
<td>OR 01</td>
<td></td>
</tr>
<tr>
<td>OR 0102</td>
<td>07</td>
<td>01, OR</td>
<td></td>
</tr>
<tr>
<td>OR 063, 0153</td>
<td>ONT</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>OR 02</td>
<td>018ab</td>
<td>018ab, 018ab, ONT</td>
<td></td>
</tr>
<tr>
<td>OR 087</td>
<td>0111, 06</td>
<td>0146, 018ab, 0153</td>
<td></td>
</tr>
<tr>
<td>OR 0153, OR 02</td>
<td>075</td>
<td>018ab, 021</td>
<td></td>
</tr>
<tr>
<td>OR 0153, OR ONT</td>
<td>075</td>
<td>ONT</td>
<td></td>
</tr>
<tr>
<td>OR 08</td>
<td>ONT</td>
<td>015</td>
<td></td>
</tr>
<tr>
<td>OR 02</td>
<td>05</td>
<td>018ab, 09</td>
<td></td>
</tr>
<tr>
<td>OR 020, OR 01</td>
<td>018ab</td>
<td>081, 021</td>
<td></td>
</tr>
<tr>
<td>OR 023, ONT, K45</td>
<td>04, 08</td>
<td>088, 0126</td>
<td></td>
</tr>
<tr>
<td>OR 023, ONT, K58*</td>
<td>ONT</td>
<td>021, 062</td>
<td></td>
</tr>
</tbody>
</table>

OR: Rough strain.
ONT: Non-typable strain.
* Klebsiella capsular type.

Table 3 **Details of adhesive and invasive strains in each diagnostic group**

<table>
<thead>
<tr>
<th>Active UC (n=8)</th>
<th>Quiescent UC (n=24)</th>
<th>Other colitis (n=1)</th>
<th>Controls (n=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli 021</td>
<td>invasive</td>
<td>E.coli OR adhesive</td>
<td></td>
</tr>
<tr>
<td>E.coli OR</td>
<td>adhesive</td>
<td>E.coli 01 adhesive</td>
<td></td>
</tr>
<tr>
<td>E.coli 026</td>
<td>invasive</td>
<td>E.coli 0146 adhesive</td>
<td></td>
</tr>
<tr>
<td>E.coli 063</td>
<td>adhesive</td>
<td>E.coli 0153 adhesive</td>
<td></td>
</tr>
<tr>
<td>E.coli 0153</td>
<td>adhesive</td>
<td>E.coli 0153 adhesive</td>
<td></td>
</tr>
<tr>
<td>E.coli 01</td>
<td>adhesive</td>
<td>E.coli 0153 adhesive</td>
<td></td>
</tr>
<tr>
<td>E.coli 087</td>
<td>adhesive</td>
<td>E.coli 0153 adhesive</td>
<td></td>
</tr>
<tr>
<td>Klebsiella K45</td>
<td>adhesive</td>
<td>E.coli 0153 adhesive</td>
<td></td>
</tr>
</tbody>
</table>

It is recognised that the faecal coliform flora in health may comprise a variety of serotypes, some of which are represented in small measure, and that the greater number of coliform colonies tested in each faecal sample, the greater the theoretical yield of serotypes. In order to identify the dominant serotype in each sample, we have chosen to select 10 colonies, as there is good evidence from a number of previous studies that this method will reveal the dominant serotype of that sample. There is also evidence from a colonoscopic study that serotypes that dominate the faecal sample also dominate the entire colonic flora and these observations suggest that our sampling methods are valid. In this study we have usually restricted ourselves to studying one faecal sample per patient. While it could be argued that the results we have obtained might be due to chance shedding of faecal pathogens, this would seem unlikely, especially as second samples obtained from five patients soon after admission to hospital either showed no change in 0-serotype of the colonies tested, or, if the original coliforms were non-typable, no change in antibiotic sensitivity in similarly non-typable strains.

In order to facilitate testing for other properties, we have assumed that each coliform colony with the same 0-serotype from the same patient had similar properties with regard to adhesiveness or invasiveness. This assumption might be invalid if adhesiveness and invasiveness are both plasmid-mediated, or if different bacterial strains with the same serotype can coexist in the same faecal sample. As all samples were treated similarly, however, it is unlikely that the results we have obtained can be accounted for thus and, in any event, while there is evidence to suggest that there is heterogeneity of properties among E.coli colonies with the same 0-type in the faeces of normal persons, the coliforms in disease conditions are...
probably more homogeneous (Varian and Cooke, unpublished observations), as is shown by our finding that one serotype tended to dominate the flora in patients with active and quiescent colitis, but not in normal persons.

We have used the HeLa cells model of LaBrec et al. (1964) to assess adheriveness and invasiveness. This method has been criticised because of the difficulties that may be encountered in differentiating between adhesion and invasion. We did not find this distinction difficult, as strains were deemed invasive only if they produced monolayer disruption within seven hours of infection. Adhesive strains did not cause disruption even if incubation was prolonged to 12 hours but overnight incubation was misleading, as monolayer disruption, secondary to the effects of bacterial multiplication on the culture medium, usually led to non-specific bacterial adhesion and an appearance similar to that of the late effects of an invasive strain. Thus we consider the technique useful but only if the monolayers are inspected frequently and assessment of adhesion or invasion is based on a study of evolving change.

Adhesion by bacterial pathogens to host cells is well recognised and appears to be an essential step in the pathogenesis of some diseases. Adhesion to the intestine may facilitate colonisation by toxin-producing bacteria or even be a primary pathogenic property. The precise significance of the adhesion we have found is uncertain, as only one of the strains, E.coli 063, is a known enterotoxigenic serotype, but, while the mechanisms of E.coli diarrhoea remain incompletely understood, tests for adheriveness are useful in determining potential pathogenicity. The adhesion by enteric pathogens to host cells has been best described in animals where a high degree of host-parasite specificity obtains. Adhesion to HeLa cells clearly lacks this specificity but, in studies of urinary tract E.coli, the ability to adhere to HeLa cells was shown to correlate with the more specific ability to adhere to uroepithelial cells, although more strains adhered to the latter, and it might be that the use of cells more closely related to colonic epithelium would reveal an even greater incidence of adhesive strains in a similar patient population. The fetal colon assay of McNeish et al. would be of value in this respect, as might the recently described use of intestine 407 cells.

The adhesive klebsiella is of interest. Although klebsiellas are not widely recognised as enteric pathogens, they have been described as such. Additional research is indicated into the role of klebsiellas in the pathogenesis of enteric disease.

The invasion of HeLa cells by enteric pathogens is recognised as being indicative of in vivo pathogen-
R J D is in receipt of research funds from the Leeds General Infirmary Special Trustees. S A V was in receipt of a MRC studentship at the time of this study. We would like to thank those physicians and surgeons of Leeds who allowed us to study patients under their care. We also wish to thank Dr A S Edmundson for typing the klebsiellas, Mr M Freeman for assistance with the tissue cultures, and Mrs C L Baxendale for typing the manuscript.

References

Increased incidence of faecal coliforms with in vitro adhesive and invasive properties in patients with ulcerative colitis.

R J Dickinson, S A Varian, A T Axon and E M Cooke

Gut 1980 21: 787-792
doi: 10.1136/gut.21.9.787

Updated information and services can be found at:
http://gut.bmj.com/content/21/9/787

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Ulcerative colitis (1113)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/