Chlamydiae and inflammatory bowel disease

P R ELLIOTT, T FORSEY, S DAROUGAR, J D Treharne, AND J E LENNARD-JONES*

From St. Mark’s Hospital, London, and the Institute of Ophthalmology, University of London, London

SUMMARY No association was found between inflammatory bowel disease and infection with C. trachomatis or C. psittaci when patients were tested for the presence of these organisms using immunohistological, cell culture isolation, and serological techniques.

The aetiology of inflammatory bowel disease is at present obscure, but there is evidence that transmissible agents such as bacteria or viruses may be associated with this condition.1-4

Chlamydia trachomatis agents are known to infect the rectum5-8 and lymphogranuloma venereum (LGV) serotypes can cause chronic inflammation with fistula formation similar to manifestations of Crohn’s disease. Previous studies reporting the presence of circulating antibodies to various chlamydial serotypes in patients with Crohn’s disease have yielded conflicting results.7-9

In this study we have investigated the possible association of C. trachomatis with inflammatory bowel disease by attempting to isolate chlamydiae in cell culture, by searching for chlamydial antigen in diseased tissue using an immunohistological technique, and by detecting antichlamydial antibody using a serological technique, in patients and healthy controls.

Methods

PATIENTS

Patients with Crohn’s disease diagnosed on the basis of previously published criteria,10 patients with ulcerative colitis diagnosed by characteristic radiological, endoscopic, and biopsy criteria, patients with other gastrointestinal diseases, and a healthy control group were included in this study. Details of age, sex, disease location, history, disease activity, and previous resection were recorded for each patient. Control subjects were interviewed to ensure that they represented a healthy population.

Culture were placed into vials of 2SP transport medium11 containing 3% v/v fetal bovine serum and stored at –70°C and those for immunohistology were placed into precooled (+4°C) 95% ethanol and stored at +4°C. Swabs were collected from resected gut and from the rectum via a sigmoidoscope. The swabs were immediately placed into vials of transport medium and stored at –70°C until cultured. Blood was taken by venepuncture, the sera separated and stored at –20°C until tested.

ISOLATION IN CELL CULTURE

Specimens in 2SP were thawed, the swabs shaken with glass beads, and the tissues macerated using a Sorvall homogeniser and inoculated on to McCoy cell monolayers which were subsequently treated with cycloheximide.12 After incubation, cell monolayers were examined for the presence of chlamydial inclusions using the method of Darougar et al.13

IMMUNOHISTOLOGY

Tissue stored in cold ethanol was cut into small blocks and cold-embedded in paraffin according to the method of Sante-Marie.14 Sections were cut approximately 6 μ thick, and stored at –70°C until stained by an indirect immunofluorescence method using serum from a patient with LGV. This human serum when titrated in the microimmunofluorescence test was found to have an antibody titre of 1/4000 against the LGV2 serotype and to cross-react with all the other chlamydial antigens at a 1/64 dilution. In this study it was used at a dilution of 1/16 and sections were subsequently reacted with a goat anti-human fluorescein conjugated whole globulin serum at a dilution of 1/10 (Hyland Labs. Inc.). Stained tissues were examined for the presence of chlamydial antigen at ×400 magnification using

*Address for communications and reprints: J E Lennard-Jones, St. Mark’s Hospital, City Road, London EC1V 2PS.

Received for publication 5 September 1980
a Zeiss standard 18 microscope fitted with mercury vapour epillumination. Although the technique is not commonly used in the diagnosis of chlamydial infection, Swanson et al. have demonstrated chlamydial inclusions in sections of cervical biopsies stained with toluidine-blue and Treharne has shown that immunofluorescence staining of infected guinea-pig conjunctival cells is more sensitive than using conventional histological stains for the detection of chlamydiae.

SEROLOGY

Sera were tested for the presence of anti-chlamydial IgG and IgM antibodies using a modified micro-immunofluorescence (micro-IF) test using the following chlamydial antigens: a pool of Chlamydia trachomatis serotypes A to C (hyperendemic trachoma types); a pool of C. trachomatis serotypes D to K (paratrichoma types); a pool of C. trachomatis serotypes LGV1 to LGV3, and a pool of representative strains of Chlamydia psittaci.

Results

Sera from 62 patients with Crohn’s disease, 58 patients with ulcerative colitis, 57 patients with other gastrointestinal disease (17 with colorectal cancer, 16 with functional bowel disorder, 24 miscellaneous) and from 45 healthy controls were tested for the presence of anti-chlamydial antibody. The clinical details are shown in the Table. Of these, antibody against C. trachomatis was detected in only three patients; two patients with ulcerative colitis and one patient with other gastrointestinal disease had only IgG antibody against C. trachomatis D to K serotypes at levels of 1/64, 1/128, and 1/16 respectively. No antibody was detected against C. psittaci agents.

Cell culture of swabs and tissue taken from 14 patients with Crohn’s disease, 14 patients with ulcerative colitis, and 13 patients with other gastrointestinal diseases were all negative for chlamydiae. Of the 14 tissue specimens obtained from patients with Crohn’s disease, 10 had histological changes consistent with a diagnosis of Crohn’s disease and five had granulomata.

No chlamydial antigen was detected by immunofluorescence staining in tissue sections from five patients with Crohn’s disease, five patients with ulcerative colitis, and 20 patients with other gastrointestinal diseases.

Discussion

Anti-chlamydial IgG against C. trachomatis antigens was detected in only two out of 120 patients with inflammatory bowel disease (Crohn’s disease and ulcerative colitis) using a micro-IF test. Cell culture of specimens from the diseased gut and rectum of 28 of these patients and immunofluorescence staining of tissue sections from the gut of 10 of these patients failed to detect chlamydiae. These negative findings suggest that it is unlikely that chlamydiae are implicated in inflammatory bowel disease.

Our results support the findings of Taylor-Robinson et al. and Swarbrick et al. but differ from those of Schuller et al. who reported that, among 55 patients with Crohn’s disease, IgG antibodies to C. trachomatis LGV serotypes were detected in 38 (69%) cases. The reasons for the discrepant findings of Schuller and colleagues could be due to their testing a different patient population, or by a variation in technique in performing the micro-IF test. Their finding of monospecific antibody responses to LGV serotypes is not consistent with the studies of other authors who have reported that sera from isolation-positive cases of LGV are generally of high titre and are broadly cross-reactive to all the C. trachomatis serotypes.

The authors are grateful to Miss Brenda Roach for secretarial help, to Mrs M Pink for her technical assistance, and to the Department of Health and Social Security and an anonymous donor for financial support. PRE was supported by the Sir Halley Stewart Trust.

Table Clinical details of patients studied

<table>
<thead>
<tr>
<th></th>
<th>Crohn’s disease</th>
<th>Ulcerative colitis</th>
<th>Other gastrointestinal diseases</th>
<th>Healthy controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>32</td>
<td>33</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>Female</td>
<td>30</td>
<td>25</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>Mean age (yr)</td>
<td>40</td>
<td>42</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small bowel</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ileocaecal</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large and small bowel</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large bowel</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anorectal disease</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± disease elsewhere</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-sided colitis</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive colitis</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of history (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;1</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>30</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>14</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;10</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td>22</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>40</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous resection</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Chlamydiae and inflammatory bowel disease


Chlamydiae and inflammatory bowel disease.

P R Elliott, T Forsey, S Darougar, J D Treharne and J E Lennard-Jones

doi: 10.1136/gut.22.1.25

Updated information and services can be found at:
http://gut.bmj.com/content/22/1/25

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/