Changes in plasma half-life and clearance of ^3H-25-hydroxyvitamin D$_3$ in patients with intestinal malabsorption

A J BATCHELOR, G WATSON, and JULIET E COMPSTON*

From the Gastrointestinal Research Unit, Rayne Institute, St Thomas’ Hospital, London

SUMMARY The plasma disappearance of intravenously administered tracer doses of tritium-labelled 25-hydroxyvitamin D$_3$ (25OHD$_3$) was studied in six normal subjects and in 15 patients with intestinal malabsorption. The plasma half-life was significantly shorter and the clearance rate significantly greater in the group with malabsorption compared with the controls. One explanation for this increased elimination could be interruption of an enterohepatic circulation of 25OHD occurring in subjects with malabsorption and such a mechanism could account for the loss of endogenous vitamin D in these patients.

Vitamin D deficiency and osteomalacia occur in a variety of intestinal disorders$^{1-3}$ and are common after jejunoileal bypass (JIB) for obesity.$^{1-3}$ As the major source of vitamin D in man is from endogenous synthesis in the skin,4 malabsorption of dietary vitamin D may not be an important cause of vitamin D deficiency in these patients, providing that exposure to ultraviolet irradiation is normal. If, however, as has been suggested,7 25-hydroxyvitamin D (25OHD) undergoes enterohepatic circulation in man, interruption of this circulation by intestinal disease, resection, or bypass could lead to increased loss of both exogenous and endogenous vitamin D. Increased faecal loss of endogenously derived 25OHD$_3$ should be associated with a reduced plasma half-life and increased clearance of the metabolite; in support of this, Arnaud et al8 reported a reduced plasma half-life of ^3H-25OHD$_3$ after its intravenous administration in four patients with coeliac disease. We have studied the plasma disappearance of radiolabelled tracer doses of 25OHD$_3$ in six normal adults and in 15 patients with intestinal malabsorption.

Methods

Patients The control group consisted of six healthy males aged 28–33 years (mean 30 years). Fifteen patients, nine females and six males, aged 24–66 years (mean 50 years) were studied. Eight had undergone small intestinal resection, for Crohn’s disease in six, carcinoid in one, and abdominal trauma in one; of these, six had also had some colonic resection. The length of remaining small intestine ranged from 60–270 cm (mean 126 cm). Four patients had undergone end-to-side anastomosis of 18 cm of proximal jejunum to 18 cm of terminal ileum as treatment for gross obesity; in one of these, a cholecystojejunoileostomy was performed two years before the study. Two patients had coeliac disease and one had unoperated Crohn’s disease with multiple small intestinal strictures. All patients had normal renal and hepatic function as assessed by plasma creatinine and conventional liver function tests. Four patients were receiving steroid therapy (prednisone or synacthen), three were receiving steroid and vitamin D therapy, two vitamin D only, and one vitamin D and phenytoin. Vitamin D therapy consisted of 150,000–300,000 units intramuscularly monthly in three patients and oral 1α-hydroxyvitamin D$_3$ (1αOHD$_3$), 2 μg daily, in the remaining three. All patients gave informed consent.

* Address for correspondence and reprints: Dr J E Compston, Gastrointestinal Research Unit, Rayne Institute, St Thomas’ Hospital, London SE1 7EH.

Received for publication 1 March 1982

Gut, 1982, 23, 1068–1071
Changes in plasma half-life and clearance of \(^{3}H\)-25-hydroxyvitamin \(D_3\) in intestinal malabsorption

changes to the study, which was approved by the hospital Ethical Committee. The study was carried out between October 1980 and August 1981.

25-hydroxy-(23,24(n)-\(^{3}H\))vitamin \(D_3\) (120 Ci/mmol) or 25-hydroxy-(26(27)methyl-\(^{3}H\))vitamin \(D_3\) (9.6 Ci/mmol) was obtained from the Radiochemical Centre, Amersham, Bucks. 2–5 \(\mu\)Ci in 15% ethanol was injected intravenously over three to five minutes. Blood samples were taken at 10 minutes, hourly for six hours and at intervals of one to three days for 30 days. Plasma radioactivity was measured by direct scintillation counting in Nuclear Enterprises 260 scintillation fluid, using an LKB Rackbeta liquid scintillation counter. Quench correction was applied using the channels ratio method.

Plasma 25OHD concentrations were measured by a competitive protein-binding assay using normal human serum as binding protein. The proportion of plasma radioactivity eluting as \(^{3}H\)-25OHD\(_3\) after injection was measured by chloroform/methanol extraction and silicic acid chromatography on weekly plasma samples from the control subjects.

The measurements of plasma radioactivity were used to construct log plasma concentration/time curves for each subject and the gradient of the slope from the fourth day onwards was determined by least squares regression analysis. The relationship half-life (T\(_{1/2}\)) = \(\log_{2}\)gradient was used to calculate the plasma half-life for each subject. Clearance rates were derived from the dose given and the area under the plasma concentration/time curve (AUC) according to the formula:

\[
\text{clearance} = \frac{\text{Slope} \times \text{dose}}{\text{AUC}}
\]

Differences between the control and study groups were assessed using Student's unpaired \(t\) test.

Results

The log plasma concentration/time curves demonstrated an early rapid exponential phase lasting about four hours. After three to four days, a second much slower exponential was seen, lasting for at least 30 days. The gradient of the second exponential was considered to represent elimination of the isotope after the attainment of distribution equilibrium.

The mean plasma half-life of \(^{3}H\)-25OHD\(_3\) in the controls was 27.5±2.1 days (±SEM), compared with 14.2±1.4 days in the patients with intestinal malabsorption (p<0.001) (Fig. 1). The mean \(^{3}H\)-25OHD\(_3\) clearance in the control group was 3.4±0.3 ml/kg/day, which was significantly lower than in the patient group (6.5±0.7 ml/kg/day; p<0.02) (Fig. 2).

Plasma 25OHD concentrations in the control group were all normal (mean 80 nmol/l; normal range 12–100 nmol/l). Five patients had 25OHD levels below 12 nmol/l; of these, three were receiving 1\(\alpha\)OHD\(_3\) therapy. The remaining nine patients had normal plasma 25OHD levels (mean 62.5 nmol/l), including all three patients who were receiving parenteral vitamin \(D_2\). There was no significant correlation between the plasma 25OHD level and the plasma \(^{3}H\)-25OHD\(_3\) half-life or clearance in either group.

Extraction and chromatography of plasma samples from the control group demonstrated that at least 90% of the radioactivity eluted as \(^{3}H\)-25OHD\(_3\) at 24 hours and at least 80% at 30 days after injection of either isotope of 25OHD\(_3\). In patients with malabsorption the corresponding figures were 84% and 75%.
metabolite. The relatively normal plasma half-life and clearance of \(^{3}H\)-25OHD\(_3\) in the patient with a cholecystojejunostomy would be consistent with this hypothesis, as enterohepatic circulations of bile acids and 25OHD should be preserved after this operation.

25OHD is the major circulating form of vitamin D in man and provides a pool for the synthesis of biologically active metabolites. Biliary excretion of metabolites of \(^{3}H\)-25OHD\(_3\) has been demonstrated in man after its intravenous administration, although quantitative estimates of the amount of radioactivity excreted vary from 12–35\% of the injected dose.\(^7\ 11\) Most of the biliary radioactivity is in the form of biologically inactive water soluble conjugates, but the form in which radioactivity is reabsorbed is unknown and direct evidence for a conservatory enterohepatic circulation in man is lacking at present.

There is evidence that the turnover of vitamin D and its metabolites is affected by vitamin D status, being more rapid in vitamin D deplete subjects;\(^{12}\) thus it is possible that vitamin D deficiency may have contributed to the shorter plasma half-life of \(^{3}H\)-25OHD\(_3\) in some of our patients. Using plasma 25OHD as an indicator of vitamin D status, however, only one-third of our patients were vitamin D deficient and, of these five, three were receiving oral 1αOHD\(_3\) therapy and may therefore not have been strictly vitamin D deficient. In addition, there was no significant correlation between the initial plasma 25OHD concentration and either plasma half-life or clearance of \(^{3}H\)-25OHD\(_3\). Nevertheless, we cannot exclude the possibility that the shorter plasma half-life in patients with malabsorption was related to vitamin D depletion.

Another factor which might affect our results is the steroid therapy taken by seven patients. The effects of corticosteroids on vitamin D metabolism are disputed and low,\(^{13}\) normal,\(^{14}\) or high\(^{15}\) plasma 25OHD concentrations have been reported in corticosteroid treated patients. The finding of impaired conversion of vitamin D to 25OHD in patients receiving large doses of corticosteroids\(^{16}\) was not confirmed in corticosteroid treated rats.\(^{17}\) The effects of corticosteroids on plasma half-life and clearance of \(^{3}H\)-25OHD\(_3\), in man are not reported and we cannot exclude the possibility that steroid therapy contributed to the enhanced elimination of \(^{3}H\)-25OHD\(_3\) in some patients. Similarly, phenytoin therapy in one patient may have affected the plasma disappearance of the metabolite, although there are no reports of phenytoin therapy alone reducing the plasma half-life of \(^{3}H\)-25OHD\(_3\).

Although the administration of \(^{3}H\)-25OHD\(_3\) as an
Changes in plasma half-life and clearance of 3H-25-hydroxyvitamin D$_3$ in intestinal malabsorption

intravenous bolus is unphysiological, the plasma half-life and clearance rate in this study were calculated from the plasma disappearance of the isotope after distribution equilibrium had been attained and thus our results should reflect the behaviour of the natural metabolite. It is possible that increased loss of 3H-25OH3D$_3$ through the intestinal mucosa contributed to the increased plasma elimination of the metabolite in patients with intestinal disease. Reduced intraduodenal bile acid concentrations due to interruption of the enterohepatic circulation of bile acids might also contribute, although there is evidence in rats and in man that the absorption of 25OH3D is not bile acid dependent.18,19

In conclusion, we have demonstrated significantly increased plasma elimination of intravenous 3H-25OH3D$_3$ in patients with intestinal malabsorption. Although we have not defined the mechanism of this increased loss, it could be explained by interruption of an enterohepatic circulation of 25OH3D. Whatever the mechanism of the reduced plasma half-life and increased clearance of 3H-25OH3D$_3$ in our patients, our findings indicate that loss of endogenous 25OH3D$_3$ is increased in malabsorption and provide an explanation for the development of vitamin D deficiency and osteomalacia in patients with normal endogenous vitamin D$_3$ synthesis who have intestinal disease, resection, or bypass.

We are grateful to the Special Trustees, St Thomas's Hospital, for generous financial support.

References

Changes in plasma half-life and clearance of 3H-25-hydroxyvitamin D3 in patients with intestinal malabsorption.
A J Batchelor, G Watson and J E Compston

Gut 1982 23: 1068-1071
doi: 10.1136/gut.23.12.1068

Updated information and services can be found at:
http://gut.bmj.com/content/23/12/1068

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/