Thyroid function tests in chronic liver disease: evidence for multiple abnormalities despite clinical euthyroidism

M BORZIO, R CALDARA, F BORZIO, V PIEPOLI, P RAMPINI, AND C FERRARI

From the Second Department of Medicine, Fatebenefratelli Hospital, Milan, Italy

SUMMARY To further evaluate thyroid function in patients with liver disease, we have measured total and free T₃ and T₄, thyroxine binding globulin, basal and thyrotropin releasing hormone-stimulated thyrotropin and thyroglobulin antibodies in 33 patients with liver cirrhosis, in 22 with chronic hepatitis and in 30 healthy controls. All the patients but one were clinically euthyroid. T₃, FT₃, T₃/thyroxine binding globulin and T₄/thyroxine binding globulin ratios and thyrotropin after thyrotropin releasing hormone were significantly reduced, while FT₄, thyroxine binding globulin and thyrotropin were significantly increased in liver cirrhosis. In chronic hepatitis group, FT₃ and T₃/thyroxine binding globulin ratio were significantly lower and thyroxine binding globulin and FT₄ were higher than in healthy controls. The between patients comparison revealed a significantly lower T₃, FT₃, T₃/thyroxine binding globulin and T₄/thyroxine binding globulin ratios and Δ thyrotropin in cirrhotics. Thyroglobulin antibodies were present at high titre only in two patients one of whom having evidence of Hashimoto’s thyroiditis with subclinical hypothyroidism. The correlation coefficient between T₄/thyroxine binding globulin ratio and FT₄ were lower in patients than in controls. Furthermore an abnormal thyrotropin response to thyrotropin releasing hormone was shown in 10 cirrhotics and in four patients with chronic hepatitis. Serum T₃ significantly correlated with serum bilirubin, albumin, and prothrombin time in both groups of patients. The present data confirm the existence of several abnormalities of thyroid function tests in patients with chronic liver disease, although showing that euthyroidism is almost always maintained, probably as a result of low-normal FT₃ and high-normal FT₄. Furthermore, T₃ serum levels appear to parallel the severity of liver dysfunction.

The liver plays an important role in thyroid hormone metabolism being involved in their conjugation, excretion, peripheral deiodination and in synthesis of thyroxine binding globulin. Although almost all patients with liver disease are clinically euthyroid, some abnormalities in circulating hormone concentrations have been shown in previous studies.¹⁻⁴ These data, however, are still controversial as the discrepant results reported may depend on the different analytical methods used as well as the different groups of patients investigated. In fact, total and free thyroxine (T₄ and FT₄) serum concentrations have been reported as normal, increased or decreased in various liver diseases;³⁻⁷ abnormalities in thyroxine binding globulin serum concentration and a reduced thyroid hormone binding capacity, perhaps because of a hypothetical circulating inhibitor, have been also reported.⁸ Moreover, total and free triiodothyronine (T₃ and FT₃) concentrations are often decreased, sometimes profoundly and their levels correlate well with the severity of liver dysfunction.⁴⁻⁹ In order to further evaluate thyroid function in liver disease, we have measured T₃, T₄, FT₃, FT₄ serum levels, thyroxine binding globulin, thyrotropin both in basal conditions and after thyrotropin releasing hormone administration, and thyroglobulin antibodies in a large number of patients with chronic liver diseases.

Methods

SUBJECTS
Fifty five patients, 44 men and 11 women, with chronic liver disease, aged 27–72 years, have been
Thyroglobulin antibodies were determined by radioimmunoassay methods. T4/thyroxine binding globulin index was measured by methods of Romelli et al.10 by using a Lepetit kit (Milano). The thyrotropin releasing hormone test (200 μg intravenously) was performed in the morning, samples for thyrotropin determination being collected at −15, 0, 20, 30 and 60 minutes.

The normal ranges in our laboratory for the above determinations are as follows: T3, 80–200 ng/dl; T4, 4.5–12 μg/dl; thyroxine binding globulin, 18–32 ng/ml; T4/thyroxine binding globulin index, 3.4–9; T4/thyroxine binding globulin index (×10), 1.8–4; FT3, 2.7–6.6 pg/ml; FT4, 6.3–16.4 pg/ml; basal thyrotropin, <5 μU/ml and maximum thyrotropin increase (Δ thyrotropin) after thyrotropin releasing hormone, 5–25 μU/ml for women and 3.5–15 μU/ml for men.

The statistical analysis was carried out using the Student's t test and linear correlation as appropriate. Data are expressed as mean±SF.

Results

The mean values for the different indices of thyroid function in the two groups of patients with liver disease and in normal controls are reported in Table 3. Cirrhotic patients showed significantly reduced serum levels of T3, T4/thyroxine binding globulin ratio, FT3, T4/thyroxine binding globulin ratio and Δ thyrotropin and significantly increased levels of thyroxine binding globulin, FT4 and basal thyrotropin versus normals. Subjects with chronic hepatitis showed significantly lower T3/thyroxine binding globulin ratio and FT3 and higher thyroxine binding globulin and FT4 levels than in controls.

The comparison between the first and the second group of patients revealed that cirrhotics have significantly lower T3, T4/thyroxine binding globulin ratio, FT3, T4/thyroxine binding globulin ratio and Δ thyrotropin. Antithyroglobulin antibodies were absent in all patients, but one with chronic alcoholic hepatitis and one with cirrhosis in whom high titres were present (1:10 000); one of them (chronic alcoholic hepatitis) also had high serum thyrotropin concentrations (14 μU/ml) with exaggerated response to thyrotropin releasing hormone, with normal total and free T3 and T4, suggesting the coexistence of Hashimoto's thyroiditis and preclinical hypothyroidism.

Table 1 Clinical diagnosis of our patients and aetiological factors

<table>
<thead>
<tr>
<th></th>
<th>No. patients</th>
<th>Alcoholic</th>
<th>Postviral</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic persistent hepatitis</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Chronic active hepatitis</td>
<td>20</td>
<td>7</td>
<td>11</td>
<td>2*</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>33</td>
<td>19</td>
<td>9</td>
<td>5†</td>
</tr>
</tbody>
</table>

* Cryptogenic
† Two haemochromatosis and three cryptogenic

Table 2 Biochemical indices of liver function in 22 patients with chronic hepatitis and in 35 cirrhotics

<table>
<thead>
<tr>
<th></th>
<th>GOT</th>
<th>Bilirubin</th>
<th>Albumin</th>
<th>Prothrombin time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic hepatitis</td>
<td>74.5±17.1</td>
<td>1.3±0.3</td>
<td>3.6±0.1</td>
<td>77.6±3.8</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>30.8±8.4</td>
<td>2.3±0.6</td>
<td>2.7±0.1</td>
<td>50.5±3.2</td>
</tr>
</tbody>
</table>

Liver Cirrhosis

This group included 33 patients (29 men and four women) aged 45–72 years. All of these subjects were hospitalised because of signs and symptoms of decompensated liver cirrhosis. None of them had evidence of oesophago-gastric bleeding, acute hepatic encephalopathy, or renal failure. Owing to either clinical conditions or coagulation abnormalities, liver biopsy was not performed in any of our cirrhotics.

Chronic Hepatitis

This group included 22 subjects (15 men and seven women) aged 27–56 years. The diagnosis of chronic hepatitis was made in all cases by needle biopsy according to the criteria of an international group.10 None of these patients showed evidence of nodular evolution in their liver specimen, although it is possible that needle biopsies in these patients may underestimate the number that have progressed to cirrhosis.

The data on histological features and on aetiological factors of our patients are summarised in Table 1. Moreover, liver chemistry tests are reported in Table 2.

Our patients did not show clinical symptoms or signs of thyroid dysfunction and did not receive medications that might have affected the radioimmunoassays performed in this study. As a control group 30 healthy subjects (23 men and seven women aged 25–73 years) were investigated.

Serum T3, T4, thyrotropin and thyroxine binding globulin14 were determined by standard radioimmunoassay methods. T4/thyroxine binding globulin and T3/thyroxine binding globulin ratios were calculated to give a free T4 and a free T3 index. Thyroglobulin antibodies were evaluated by a radioassay procedure.15 Serum FT3 and FT4 were measured by direct radioimmunoassay with the

Thyroid function were determined by standard radioimmunoassay methods. T3/thyroxine binding globulin index and FT3, FT4 and FT4/thyroxine binding globulin ratio were calculated to give a free T3 and a free T4 index. Thyroglobulin antibodies were evaluated by a radioassay procedure.15 Serum FT3 and FT4 were measured by direct radioimmunoassay with the

Thyroid function were determined by standard radioimmunoassay methods. T3/thyroxine binding globulin index and FT3, FT4 and FT4/thyroxine binding globulin ratio were calculated to give a free T3 and a free T4 index. Thyroglobulin antibodies were evaluated by a radioassay procedure.15 Serum FT3 and FT4 were measured by direct radioimmunoassay with the
Thyroid function tests in chronic liver disease

Table 3 Indices of thyroid function in patients with chronic liver disease (22 with chronic hepatitis, 33 with cirrhosis) and sex and age-matched healthy controls (mean±SE).

<table>
<thead>
<tr>
<th></th>
<th>T₃</th>
<th>T₄</th>
<th>T₄/TBG</th>
<th>T₄/TBG</th>
<th>FT₃</th>
<th>FT₄</th>
<th>TSH</th>
<th>ΔTSH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ng/dl</td>
<td>μg/dl</td>
<td>ng/ml</td>
<td>ratio</td>
<td>(×10)</td>
<td>pg/ml</td>
<td>pg/ml</td>
<td>μU/ml</td>
</tr>
<tr>
<td>Chronic hepatitis</td>
<td>130±8.2</td>
<td>7.5±0.5</td>
<td>28.6±1.7</td>
<td>4.67±0.51</td>
<td>2.84±0.16</td>
<td>3.6±0.2*</td>
<td>11.9±0.8*</td>
<td>2.7±0.2</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>78±5.4</td>
<td>6.7±0.4</td>
<td>26.5±1*</td>
<td>2.99±0.19†</td>
<td>2.54±0.10‡</td>
<td>2.9±0.11‡</td>
<td>11.9±0.5</td>
<td>3.1±0.2*</td>
</tr>
<tr>
<td>Controls</td>
<td>140±6.9</td>
<td>7.3±0.2</td>
<td>23.7±0.5</td>
<td>5.97±0.28</td>
<td>3.05±0.07</td>
<td>4.2±0.1</td>
<td>9.9±0.3</td>
<td>2.4±0.1</td>
</tr>
</tbody>
</table>

* p<0.05 vs controls; † p<0.01 vs controls; ‡ p<0.001 vs controls; § p<0.05 vs chronic hepatitis; ¶ p<0.01 vs chronic hepatitis;
|| p<0.001 vs chronic hepatitis.

The results obtained with total and free T₃ and T₄ concentrations in the individual patients are shown in Figs. 1–3. Low T₃ values were observed in 18 cirrhotics and in two patients with chronic hepatitis. T₄ was normal in all cases, except for five cirrhotics with low values and one subject for each group with slightly raised concentrations (Fig. 1). FT₃ was reduced in 18 cirrhotics and in four subjects with hepatitis (Fig. 2). FT₄ was normal in all instances except two cases with low, and four with raised concentrations (Fig. 3). Figure 4 shows that almost all patients with low FT₃ had normal or sometimes raised FT₄.

T₃/thyroxine binding globulin and T₄/thyroxine binding globulin ratios were significantly correlated with the actual FT₃ and FT₄ concentrations, respectively, both in subjects with cirrhosis and chronic hepatitis (Figs. 5, 6). While the correlation coefficient, however, between T₃/thyroxine binding globulin ratio and FT₃ was not different from that observed in normal controls (r=0.65, p<0.001), the coefficients between T₄/thyroxine binding globulin ratio and FT₄ were lower, particularly in cirrhotics, than that observed in normals (r=0.82, p<0.001). Basal serum thyrotropin concentrations above the normal range were found in two cirrhotic patients (6.5 and 7.8 μU/ml) and in the above mentioned subject with chronic hepatitis and Hashimoto’s thyroiditis. The thyrotropin response to thyrotropin releasing hormone was normal in 23 and impaired in 10 patients with cirrhosis; among subjects with chronic hepatitis 18 had normal, two impaired and two exaggerated responses. The delayed pattern of thyrotropin response to thyrotropin releasing hormone – that is, 60 minute concentrations higher than 20 minute concentrations, was observed in eight cirrhotics.

Simple correlation analysis showed that serum T₃

Fig. 1 Serum T₄ vs T₃ concentrations in individual patients with liver cirrhosis (•) and chronic hepatitis (△). Solid lines outline normal range.

Fig. 2 Serum T₃ vs FT₃ concentrations in patients with cirrhosis and chronic hepatitis. Symbols as in Fig. 1.
concentration was significantly correlated in both patient groups with serum bilirubin albumin, and prothrombin time, but not with transaminases.

Discussion

The existence of the so called low T₃ syndrome — that is, low total T₃ with normal total T₄ and thyrotropin concentrations in the absence of clinical hypothyroidism, has been frequently reported in patients with chronic liver disease as well as in many other non-thyroidal illnesses,¹⁻³ ⁶ ¹⁷ and it has been shown to depend on impaired liver conversion of T₄ to T₃.²

Our data also confirm a highly significant reduction of T₃ serum concentration in liver disease, the...
lowest values being found in cirrhotics, with generally normal total T₄ and thyrotropin concentrations.

In a large group of alcoholic patients Israel et al.⁹ reported a significant inverse correlation between serum T₃ concentrations and the severity of liver dysfunction as well as a progressive T₃ increase in those subjects eventually displaying a favourable outcome, suggesting that T₃ concentrations in patients with advanced liver disease may be considered as a helpful prognostic indicator. Moreover, we have found a good correlation between T₃ concentrations and serum albumin, bilirubin, and prothrombin-time, while no correlation has been found with the hepatic inflammatory indices like the transaminases and γ globulins. These results suggest that T₃ concentrations should be considered a sensitive index of hepatic function in liver disease.

Only little data have been previously reported on direct measurement of free thyroid hormones in liver patients. Green et al.¹⁰ found normal FT₃ and FT₄ in a small group of cirrhotic patients while low FT₄ and normal FT₃ concentrations were present in alcoholic fatty liver. Many studies performed with equilibrium dialysis, however, showed decreased FT₃ and normal or frequently increased FT₄ concentrations.² ¹⁸ These findings are confirmed by the present study with direct radioimmunoassay of FT₃ and FT₄, both in cirrhotics and in chronic hepatitis patients, although showing more severe abnormalities, especially lower FT₃ concentrations in the former group. These data suggest that in chronic liver disease euthyroidism is maintained by a subtle equilibrium between low FT₃ and raised FT₄ concentrations. The reason for the discrepancy between normal total T₄ and increased FT₄ concentrations in liver disease is unclear. The finding of increased, rather than decreased, thyroxine binding globulin serum concentration in our patients, in agreement with other reports,¹⁹ ²⁰ as well as the finding of a reduced T₄/thyroxine binding globulin ratio with an increased FT₄ concentration is in agreement with previous suggestions for the presence of a circulating inhibitor (perhaps an IgM molecule) of T₄ binding to thyroxine binding globulin in non-thyroidal illnesses including liver cirrhosis.⁷ ⁸ Although we have found a significant correlation between T₄/thyroxine binding globulin ratio and FT₄ in our patients, the correlation coefficient was significantly lower than in normal controls, a finding compatible with the above hypothesis. Slightly increased serum thyrotropin concentration in liver cirrhosis has been previously reported,² ³ but the possibility that this finding indicates the existence of hypothyroidism is unlikely in view of the normal or even reduced thyrotropin response to thyrotropin releasing hormone,³ a finding confirmed in the present investigation. More likely, the abnormalities in thyrotropin secretion reflect the existence of hypothalamic-pituitary dysfunction in advanced liver disease. In particular, several lines of evidence suggest a reduced dopaminergic tone as a consequence of the accumulation of false neurotransmitters,²¹ ²² which might be responsible for raised basal thyrotropin concentrations, as dopamine has been shown to exert an inhibitory effect in the regulation of thyrotropin secretion.²³ True evidence for hypothyroidism, albeit at a preclinical stage, as suggested by clearly raised thyrotropin concentrations and increased thyrotropin releasing hormone response, has been only found in one patient of the present series, who was affected with Hashimoto's thyroiditis and severe alcoholic hepatitis. Only one of the other 54 patients with either liver cirrhosis or chronic hepatitis had high titres of thyroglobulin antibodies suggesting Hashimoto's thyroiditis, while this disease is relatively frequent in primary biliary cirrhosis and autoimmune hepatitis.²⁴ In this connection it is to be pointed out that none of these two patients had positive tests for antinuclear, antismooth muscle and antimimithocondrial antibodies.

In conclusion, the present investigation, in which thyroid function has been evaluated with all the clinically available indices, confirms the existence of several abnormalities in thyroid function tests in chronic liver disease, although showing that euthyroidism is maintained virtually in all patients, probably as a result of low-normal FT₃ and high-normal FT₄. Furthermore, T₃ serum concentrations appear to parallel the severity of liver dysfunction.

References

4 Walfish PG, Orrego H, Israel Y, Blake, J Kalant H.

Thyroid function tests in chronic liver disease: evidence for multiple abnormalities despite clinical euthyroidism.

M Borzio, R Caldara, F Borzio, V Piepoli, P Rampini and C Ferrari

Gut 1983 24: 631-636
doi: 10.1136/gut.24.7.631

Updated information and services can be found at:
http://gut.bmj.com/content/24/7/631

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Cirrhosis (331)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/