Leading article

D-penicillamine for primary biliary cirrhosis

In the mid 1970's an exciting new treatment for patients with primary biliary cirrhosis was proposed. The disease was by that time recognised as presenting not only with a picture of late 'obstructive' jaundice, but more often with non-specific symptoms, particularly pruritus, or malaise and abdominal pain. Although the cause of primary biliary cirrhosis was not (and is not) understood, the hepatic deposition of copper was recognised and by analogy with Wilson's disease, the possible function of copper causing liver damage was postulated. During the 1970's the role of immune complexes in the aetiology, or at least in the perpetuation of primary biliary cirrhosis, was proposed.

D-penicillamine was clearly useful in patients with Wilson's disease, and it was active in improving rheumatoid arthritis; possibly by decreasing deposition of immune complexes and it had the added bonus of impairing the maturation of collagen, thus possibly slowing progression towards cirrhosis. Thus by 'acting here, here and here' – to coin a phrase – it appeared to offer the hope of an effective treatment for primary biliary cirrhosis. Accordingly between 1975 and 1979 at least seven controlled trials were set up in Europe and the United States. The hope of success was enhanced by preliminary reports of decreased immune complexes and immunoglobulins and removal of copper by D-penicillamine from the liver.

Unfortunately what appeared so straightforward and hopeful has not been confirmed. Recent studies of the natural history of the disease suggest that three broad groups of patients can be considered. There is a pool of asymptomatic (or almost asymptomatic) patients, most with an early histological stage of the disease, but some with established cirrhosis. These individuals have a normal, or near normal life expectancy. There are still a number of patients who present for the first time with jaundice and signs or symptoms of liver failure, or portal hypertension; the prognosis in this group is poor. There is also an intermediate group, usually detected because of pruritus, malaise, or non-specific symptoms. The exact size of this group in relation to the whole is debatable, as is their prognosis, but it probably represents 50–70% of all patients, with a life expectancy of perhaps 5–10 years from diagnosis in most of these individuals.

Understanding of the pathogenesis of primary biliary cirrhosis is still poor. While hepatic deposition of copper is progressive and correlates with the stage of the disease, its pattern of hepatic retention is different from Wilson's disease and it is probably not important in pathogenesis. Likewise although immune complexes circulate in the serum of patients with primary biliary cirrhosis, this may well be another epiphenomenon,
rather than an important pathological mechanism. In 1981 the preliminary results of treatment with D-penicillamine of 87 patients for a mean period of 44 months in a controlled trial showed better survival in the treated group and also possible histological and biochemical improvement. These observations were supported by those of the Mayo Clinic group in 1982. This initial optimism has not, however, been confirmed either by further follow up and expansion of the studies cited or by the well-conducted European multicentre trial reported in this issue of Gut. A summary of the major reported controlled trials is in the Table. Although it is disappointing that seven controlled trials involving 767 patients have not shown improved survival on D-penicillamine treatment of primary biliary cirrhosis, a number of lessons may be drawn. These may be categorised as direct lessons and as being wise after the event.

The main direct lesson is that, as in rheumatoid arthritis, D-penicillamine causes adverse reactions, severe enough for the treatment to be discontinued in about one third of the patients. Although only one death was attributed directly to the therapy, thrombocytopenia, proteinuria, lichen planus and other rashes, and LE-like illness and a severe myasthenic syndrome were all recorded. A second conclusion is that if D-penicillamine treatment is beneficial, then the effect is almost certainly small. Wiesner et al concluded after a controlled trial in 310 patients that 'the data are statistically inconsistent with the hypothesis that D-penicillamine provides at least a 50% improvement in survival over placebo'. Nonetheless in the multicentre trial reported in this issue, the mortality rate in early stages of the disease among the treated group was one third of that seen in the placebo treated patients (p=0.15).

Lessons which we may call being wise after the event relate to increased understanding of the natural history of the disease and to improved comprehension (at least among some of the investigators) of the implications of this clinical spectrum on the design of trials. It has become clear that until more is known of the cause, or causes of primary biliary cirrhosis there is little justification for treatment of asymptomatic patients, particularly with early histological lesions, because their life expectancy is excellent and the 'cure' may be worse than the illness. On the other hand it now appears unlikely that any treatment which we can at present envisage, apart from liver transplantation, will benefit primary biliary cirrhosis patients with marked jaundice and established signs of hepatic decompensation – in short with end-stage liver disease. Thus any new treatment should be particularly aimed at the intermediate group of patients – those with some symptoms, but not clinically and histologically at 'end stage'. This intermediate group probably accounted for only 50–70% of patients entered into the D-penicillamine trials, thus diluting treatment and placebo groups with some individuals who were destined to die regardless of treatment, and with a larger number in whom active therapy could not be expected to show improved survival, because they were destined to survive anyway. Realisation of this has led to an examination of the design and interpretation of the published trials. Epstein and colleagues calculated the number of patients necessary to determine reduction in five year mortality from 40–30%, with 80% certainty at 5% significance. They suggested that a controlled trial
<table>
<thead>
<tr>
<th>Trial</th>
<th>Patients (no)</th>
<th>Mean follow up</th>
<th>D-P dose (mg/day)</th>
<th>Adverse reactions</th>
<th>Results of treatment</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Multicentre[15]</td>
<td>189</td>
<td>c.24</td>
<td>1200</td>
<td>36% treated pts withdrawn c.1/3 withdrawn</td>
<td>No benefit</td>
<td>Reduced (p<0.01) after 45/12 No statistical benefit (p=0.08)</td>
</tr>
<tr>
<td>Royal Free Hospital[13]</td>
<td>98</td>
<td>66</td>
<td>600</td>
<td></td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>Mayo Clinic[14, 17]</td>
<td>310</td>
<td>NS*</td>
<td>1000</td>
<td>105 in 155 patients</td>
<td>No histological benefit</td>
<td>Reduced</td>
</tr>
<tr>
<td>Boston[18]</td>
<td>52</td>
<td>28</td>
<td>1000</td>
<td>'major' 31% 'severe' 37-5%</td>
<td>↓ AST, copper ↓ AST, alk phos, immunoglobulins, copper</td>
<td>No benefit</td>
</tr>
<tr>
<td>Newcastle[19]</td>
<td>59</td>
<td>36</td>
<td>250 or 1000</td>
<td></td>
<td>↓ AST, copper ↓ AST, alk phos, immunoglobulins</td>
<td>No benefit</td>
</tr>
<tr>
<td>Sheffield[20]</td>
<td>35</td>
<td>c.24</td>
<td>875</td>
<td>1 patient withdrawn</td>
<td>Histological improvement ↓ Immunoglobulins, copper</td>
<td>No benefit</td>
</tr>
<tr>
<td>Holland[21]</td>
<td>24</td>
<td>NS</td>
<td>1000</td>
<td>2/11 treated pts withdrawn</td>
<td></td>
<td>No benefit</td>
</tr>
</tbody>
</table>

* Total study 9 years
involved 710 patients would be necessary – ironically, a number not
dissimilar from the total number of patients enrolled into the published
trials. It is further suggested that a definite end point in time should be
decided before the trial begins, because timing of analysis may otherwise
be determined by the trialists during the course of such a long study
according to previous criteria.

In a disease with an often leisurely natural history, other variables
besides mortality should be examined. Neuberger and colleagues provide
persuasive arguments elsewhere in this issue that the best method for
analysis of clinical, serological, and histological features is by life table
analysis, using the log rank test for comparison of groups.22 This allows
for incomplete follow up due to death, withdrawal, or drop outs. By using
the occurrence rate ratio to analyse the effect of treatment, they claim a
more effective discrimination of the population trend, than by measuring
the percentage changes of clinical and biochemical variables with time.

The verdict on D-penicillamine treatment for primary biliary cirrhosis is
the Scottish one of ‘case not proven’. The likelihood is that there is a
marginal decrease in mortality in the middle, symptomatic, group of
patients, but the price of adverse reactions to the drug is probably too
high to justify the further long and elaborate clinical trials necessary to
prove the point, particularly when other treatments now under
consideration – notably cyclosporin and prednisolone – may offer better
results.

In future testing of new treatments for primary biliary cirrhosis it seems
that simple controlled trials, even with stratification of patients, may not
be enough. Careful thought should be given to the size of the population
to be studied to ensure that the trial is powerful enough to indicate the
efficacy of the treatment. The objects of each study should also be clearly
understood – is mortality alone the criterion of success or failure, or will
clinical, histological, and biochemical measurements also be examined by
such useful statistical tools as occurrence rate ratio and life table analysis?
Attention must also be paid to the group or groups of patients studied –
asymptomatic, symptomatic, or late. In this way the inconclusive results
reported after almost a decade of effort with D-penicillamine may not be
repeated with new drugs.

O F W JAMES

Freeman Hospital,
Newcastle-upon-Tyne

References

1 Sherlock S, Scheuer PJ. The presentation and diagnosis of 100 patients with primary
2 Fleming CR, Dickson ER, Baggenstoss AH, McCall JT. Copper and primary biliary
3 Wands JR, Dienstag JL, Bhan AK, Feller ER, Isselbacher KJ. Circulating immune
D-penicillamine for primary biliary cirrhosis

D-penicillamine for primary biliary cirrhosis.

O F James

Gut 1985 26: 109-113
doi: 10.1136/gut.26.2.109

Updated information and services can be found at:
http://gut.bmj.com/content/26/2/109.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Pancreas and biliary tract (1949)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/