Function of the anal sphincters after chronic radiation injury

J S VARMA, A N SMITH, AND A BUSUTTIL

From the University Department of Surgery/Urology, Wolfson Gastrointestinal Laboratory and Department of Pathology, Western General Hospital, Edinburgh

SUMMARY Anorectal manometry was done in 10 men with chronic radiation proctitis and symptoms of urgency, frequency, and occasional incontinence of faeces. They were compared with 10 asymptomatic age and sex-matched controls. The maximum resting anal canal pressure and the physiological sphincter length were significantly lower (p<0.01) in the irradiated group. The rectosphincteric reflex was absent in one patient and showed abnormalities of recovery in four others, who had received radiotherapy. The squeeze pressure of the external sphincter was not significantly different. These results indicate that dysfunction of the internal anal sphincter may contribute to patients’ anorectal symptoms after pelvic radiotherapy. Histological evidence suggests that damage to the myenteric plexus is mainly responsible. The manometric function of the external sphincter remains relatively unaffected.

Radiotherapy is being increasingly used for the treatment of malignancy arising in the pelvic viscera. Inevitably, the incidence of associated radiation injury to healthy surrounding tissue with its sequelae has increased, sometimes necessitating surgical intervention. The rectum is the commonest site of injury after pelvic irradiation; more than 70% of patients with radiation gastrointestinal injury have this site involved, sometimes in conjunction with other organs. The fixed anatomical position of the rectum in the pelvis makes it more susceptible to the injurious effects of radiation compared with the more ‘mobile’ organs such as the small bowel.

A very common symptom of radiation anorectal injury is loose bowel motions with faecal incontinence, often chronic in nature. Some of this symptomatology may be explainable by the accompanying proctitis and changes in rectal physiology. It is conceivable that the continence function of the pelvic floor is also compromised as a result of the radiation injury, thus aggravating the severity of the faecal incontinence.

We have manometrically evaluated the function of the internal and external anal sphincters in patients with symptomatic chronic radiation rectal injury and compared it with a matched control group of asymptomatic subjects.

Methods

Patients Approval for this investigation was obtained from the ethical committee of the North Lothian District, Lothian Health Board, Edinburgh, Scotland, on 16 June 1983. Informed consent was obtained from all the subjects participating in the study. The symptomatic irradiated group comprised 10 men (age range 63–80 years, mean 74 years) who received radiotherapy for prostatic carcinoma and all had subsequently developed the symptoms of faecal incontinence, increased frequency, urgency and occasional loose bowel motions. Identical small field external beam radiotherapy (5000 Centigrays in 20 treatments over four weeks) had been given to this group of men from 2 to 5.5 years before the study (mean 3.5 years). The control group consisted of 10 age-matched male hospital patients who had been admitted for minor surgery not involving the gastrointestinal tract and who had no anorectal symptoms.

Manometry All subjects were requested to empty their bowel before the pressure studies. Anorectal manometry was done with the patient in the left lateral position. A water filled system consisting of microballoon
Function of the anal sphincters after chronic radiation injury

There is a significant reduction in this pressure in the radiation group (p<0.01). Figure 2 compares the length of the manometrically determined high-pressure zone in the two groups as measured with the station pull through technique. This is also significantly reduced in the radiation group (p<0.01). The Table shows the values for the other parameters measured and their statistical significance. The presence and recovery of the rectosphincteric reflex was affected by radiation. The amplitude was significantly reduced after radiation and in one patient the reflex was absent. All control subjects showed restoration of the maximum resting pressure to baseline levels within 30 seconds on inflation of the rectal balloon and immediately on deflation of the balloon. In contrast, four patients in the radiation group showed no recovery of this...
Table Comparison of the five sphincter parameters in the two groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group (n=10)</th>
<th>Radiation group (n=10)</th>
<th>Significance (Wilcoxon’s signed rank sum test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum resting pressure (cm. H₂O, mean±SEM)</td>
<td>99 ± 6</td>
<td>66 ±</td>
<td>p<0-01</td>
</tr>
<tr>
<td>Functional sphincter length (cm. H₂O, mean±SEM)</td>
<td>4-25 ±</td>
<td>2-65 ±</td>
<td>p<0-01</td>
</tr>
<tr>
<td>Amplitude of rectosphincteric reflex (cm. H₂O, mean±SEM)</td>
<td>4-6 ±</td>
<td>25 ±</td>
<td>p<0-02</td>
</tr>
<tr>
<td>Maximum voluntary contraction pressure (cm. H₂O, mean±SEM)</td>
<td>10-5 ±</td>
<td>16-9 ±</td>
<td>p<0-05</td>
</tr>
<tr>
<td>Maximum squeeze pressure (cm. H₂O, mean±SEM)</td>
<td>12-0 ±</td>
<td>86 ±</td>
<td>p>0-5</td>
</tr>
</tbody>
</table>

reflex as long as the balloon remained inflated, and time to recovery of resting pressure was prolonged to more than 60 seconds on deflation of the balloon.

The remaining five patients showed normal recovery of the reflex. Maximum voluntary contraction pressure was reduced in the radiated group but this is probably attributable to the reduced maximum resting pressure because no difference in the 'squeeze' pressure – that is, maximum voluntary contraction pressure minus maximum resting pressure, could be demonstrated (p>0.05). All the patients had identical symptoms of urgency and frequency of defaecation with occasional faecal incontinence.

HISTOPATHOLOGY

Microscopic examination of the sections taken from all the eight resected specimens showed identical histopathological changes. Figures 3, 4, and 5 are sections taken from the lower rectums of patients who had undergone anterior resection of the rectum with coloanal sleeve anastomosis for severe radiation injury. They show the histopathological effects of irradiation on the neuronal plexuses and smooth muscle. There is hypertrophy of the muscle of both the muscularis mucosae and muscularis propria with some enlargement of the myocytic nuclei (Figs 3 and 4). In the submucosal nerve plexus (Meissner’s)

Fig. 3 Lower rectum. Hypertrophy of the muscularis layers and prominence of Auerbach’s plexus (H&E×40 orig. mag.).
Function of the anal sphincters after chronic radiation injury

There is altered motility with increased frequency of defaecation and urgency, and symptoms of urgency, including incontinence of faeces in women and urgency and frequency of micturition in men with resultant effects on anal sphincter function. None of the patients had anorectal symptoms before radiotherapy. Digital rectal examination of the prostate had been carried out only at six monthly intervals after radiotherapy and was therefore not presumed to have had any adverse effects on anal sphincter function. Although the histological preparations were taken from different patients to those studied manometrically, the total therapeutic dosage of pelvic irradiation delivered to the two groups and the time since radiation was identical.

The internal anal sphincter is responsible for up to 85% of the maximum resting pressure in the anal canal and therefore also for the length of its manometric high pressure zone. The significant reduction in the maximum resting pressure and physiological sphincter length in the irradiated group suggests dysfunction of this muscle. Relaxation of the internal anal sphincter on distension of the rectum is a smooth muscle reflex partly mediated via the myenteric plexus although receptors in the pelvic floor may share in this. The abnormalities in the elicitation, amplitude, and recovery of this reflex after pelvic radiotherapy point to a possible functional abnormality of the autonomic ganglion cells or axons constituting this neuronal network. The reduction in the amplitude of the rectosphincteric reflex in the irradiated group is partly because of the lower resting anal canal pressures but can also be influenced by other variables – for example, the radius of the rectal lumen and compressibility of the air filling the rectal balloon. Nevertheless, it has been used as an index of internal sphincter function by other workers and complements the results obtained from measurement of the other parameters in this study. Furthermore, there is some evidence that the presence and amplitude of the rectosphincteric reflex is inversely related to the compliance and accommodation properties of the rectum. The observation that this reflex is reduced after radiation injury – that is, in the presence of severe...
reduction in rectal compliance, is therefore good evidence of internal anal sphincter malfunction in this disorder. It is relevant that similar abnormalities of the rectosphincteric reflex may be seen in Hirschsprung's disease where the significant pathology is an absence of the ganglion cells and in other forms of neuronal intestinal dysplasia. The hypertrophy of the smooth muscle seen in the histological preparations is further evidence of damage to the myenteric plexus as there is some evidence that denervated smooth muscle hypertrophies.

The function of the striated external sphincter as evaluated manometrically appears relatively less prone to the effects of pelvic irradiation. This is perhaps not surprising as somatic nerve axons and muscle are considered relatively resistant to radiation with resultant 'sparing' of the manometric function of this sphincter. It remains possible, however, that late effects occur with microvascular involvement. Modern electrophysiological methods may be able to provide further information on the effects of radiation on the function of the striated musculature of the pelvic floor. With higher doses of local irradiation such as that used for the treatment of cervical cancer, dysfunction of the external sphincter may become more apparent.

This study shows physiological dysfunction of the internal anal sphincter in symptomatic radiation anorectal injury. This may contribute to and therefore aggravate symptoms caused by abnormalities of rectal function. The manometric and histopathological evidence suggests that radiation damage to the relatively radiosensitive myenteric plexus is an important factor in the pathophysiology of this disorder, although a degree of direct damage to smooth muscle may also occur.

Awareness of the pathophysiological effects of radiation on pelvic floor function may lead radiation oncologists to study the feasibility of less injurious techniques and gastroenterologists to search for better therapeutic measures.

J S V was supported by a Wellcome Trust Research grant no 12196 14 L. We are most grateful to Professor G D Chisholm and Mr L L Beynon for enabling us to study patients under their care.
Function of the anal sphincters after chronic radiation injury

References

24 Smith AN, Varma JS. The latency of the pudendoanal reflex in man. J Physiol 1984; 360: 49P.
Function of the anal sphincters after chronic radiation injury.

J S Varma, A N Smith and A Busuttil

Gut 1986 27: 528-533
doi: 10.1136/gut.27.5.528

Updated information and services can be found at:
http://gut.bmj.com/content/27/5/528

Email alerting service

These include:
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
_http://group.bmj.com/subscribe/