Enteral feeding: techniques of administration

B J M JONES
The London Hospital, London

The objective of nutritional support is to provide sufficient nutrients to maintain or improve nutritional state. These aims may be difficult to achieve using enteral nutrition as positive nitrogen balance may not be established consistently throughout a course. This finding has little to do with the formulation of the diet itself as up to one third of a prescribed diet may never reach the patient.

Although much emphasis has been placed on the absorption characteristics of various substrates used in enteral feeds, their full potential can only be achieved if proper attention is paid to the more mundane subject of their administration. It is essential that the complete volume prescribed reaches the small bowel while minimising feed related complications such as vomiting, aspiration, diarrhoea and ostomy losses. Equipment must be safe, simple, and inexpensive. Greater emphasis than hitherto must be placed on the training of medical and nursing staff in nutritional support techniques. The choice of equipment should be rationalised according to local requirements, preferably under the auspices of a “nutrition team.”

Equipment

Continuous infusion of feed from a reservoir via a fine bore nasogastric or nasoenteric tube with or without an infusion pump is now commonplace and has largely replaced bolus feeding.

Reservoirs

The trend away from “home brew” formulations to commercially prepared sterile products has allowed much larger reservoirs to be used. A two litre container may need refilling only once a day, provided that the feed and container are both sterile. The fewer refills required during the day, the more likely the prescribed amount will reach the patient’s gut. The reservoir should not be compatible with intravenous infusion sets. Ideally a range of commercially prepared bags containing one to two litres of sterile feeds of varying nitrogen and energy contents should be available for “off the shelf use.”

There is already ample evidence to show that home brew feeds are associated with unacceptable bacterial contamination and lead to an increased incidence of diarrhoea. Any additions to sterile feeds must also be sterile. Effervescent electrolyte sources tend to curdle whole protein feeds, so that only simple sterile preparations of sodium or potassium chloride should be added. It is not necessary to infuse feeds at body temperature as refrigerated feeds rapidly equilibrate with intra-abdominal temperature and have little effect on gastric motility.

Giving sets

The giving set should be incompatible with intravenous solution containers and should preferably be integral with the reservoir. A satisfactory flow regulator is required. The lower end of the set must be incompatible with intravenous catheter hubs, and this is most easily achieved by a reversed luer connection of different gauge from intravenous luer systems. A recent case highlights the risks associated with failure to observe these regulations, as inadvertent intravenous infusion of enteral feeds has serious bacteriological and biochemical consequences. Giving sets and reservoirs are best changed daily as infection may ascend from the patient.

Infusion pumps

Simple gravity assisted infusion is satisfactory for most patients, provided a continuous 24 hour infusion is maintained. There remain a small number of patients, however, in whom gravity feeding is associated with variations in flow rate sufficient to provoke regurgitation, vomiting, aspiration, discomfort or diarrhoea. In these patients a simple enteral feeding pump may allow continuation of enteral feeding, thus obviating the need for parenteral feeding. Patients most likely to prove sensitive to variations in flow rates (including bolus feeding) are those with a gastrectomy, short gut, or severe impairment of pancreatic or small bowel function. Most authors favour pump control for intraduodenal or jejunal feeding. The pump need not be as complicated as an intravenous model but should be incompatible with intravenous

Correspondence to: Dr B J M Jones, The Wordsley Hospital, Wordsley, Stourbridge, West Midlands DY8 5OY, England.
infusion sets. An additional benefit of pumps is the half hour/day saving of nursing time by comparison with gravity assisted feeding.

FEEDING TUBES AND THEIR PLACEMENT

There are no controlled studies that have directly compared large bore with fine bore feeding tubes. Nevertheless, it is now widely accepted that large bore (Ryle) tubes are associated with an unacceptable incidence of complications compared with fine bore tubes (Table 1).

Table 1 **Claimed complications of large bore nasogastric or nasoenteric feeding tubes**

<table>
<thead>
<tr>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharyngeal discomfort</td>
</tr>
<tr>
<td>Nasal erosions and septal necrosis or abscess</td>
</tr>
<tr>
<td>Acute sinusitis</td>
</tr>
<tr>
<td>Acute otitis media</td>
</tr>
<tr>
<td>Intracranial misplacement</td>
</tr>
<tr>
<td>Hoarseness</td>
</tr>
<tr>
<td>Excessive gagging</td>
</tr>
<tr>
<td>Difficulties with coughing</td>
</tr>
<tr>
<td>Laryngeal ulceration or stenosis</td>
</tr>
<tr>
<td>Tracheo-oesophageal fistula (endotracheal tube increases risk)</td>
</tr>
<tr>
<td>Oesophagitis</td>
</tr>
<tr>
<td>Oesophageal ulceration (often linear)</td>
</tr>
<tr>
<td>Oesophageal stricture</td>
</tr>
<tr>
<td>Gastro-oesophageal reflux</td>
</tr>
<tr>
<td>Rupture of oesophageal varices</td>
</tr>
<tr>
<td>Perforation of oesophagus</td>
</tr>
<tr>
<td>Gastric erosions or ulceration (often linear)</td>
</tr>
<tr>
<td>Gastric perforation or haemorrhage</td>
</tr>
<tr>
<td>Duodenal perforation or haemorrhage</td>
</tr>
<tr>
<td>Intussusception</td>
</tr>
</tbody>
</table>

Table 2 **Problems associated with fine bore feeding tubes**

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misplacement: Nasopharynx</td>
</tr>
<tr>
<td>Bronchial tree</td>
</tr>
<tr>
<td>Displacement: Partial or complete</td>
</tr>
<tr>
<td>Blockage</td>
</tr>
<tr>
<td>Poor flow characteristics with viscous feeds</td>
</tr>
<tr>
<td>Aspiration of gastric contents difficult</td>
</tr>
<tr>
<td>Knotting</td>
</tr>
<tr>
<td>Passage difficult in presence of endotracheal tube or neurological dysphagia</td>
</tr>
<tr>
<td>Oesophageal perforation (one case)</td>
</tr>
</tbody>
</table>

may lead to pulmonary aspiration. A major factor influencing the amount of feed given daily is delay in replacement of displaced feeding tubes. Most patients will require at least two replacements over a two to three week course.

Placement of feeding tubes may necessitate a simple “blind” intubation of the stomach or more skilled fluoroscopic, endoscopic, or surgical intervention. Fine bore nasogastric tubes are most easily passed with an internal stiffener. Those in situ tubes with side holes should not have their stiffener repassed because of the risk of oesophageal perforation. Patients receiving nocturnal home enteral nutrition can often pass their own tubes nightly. As tracheobronchial misplacement is the most common problem associated with fine bore tubes the intragastric position of the tip must be confirmed either by insufflation of 5 ml air with epigastric auscultation or by a chest radiograph. In my experience the former approach is satisfactory for properly instructed staff.

Simple blind intubation may also be satisfactory for pernasal intubation of the duodenum, jejunum, or efferent gastroenterostomy stoma. The prime indication for such procedures, however – namely, delayed gastric emptying – may mitigate against successful placement. Metoclopramide may be helpful as may a mercury weighted tube with appropriate positioning of the patient. If this fails then fluoroscopic or endoscopic placement may be tried. Weighted tubes have also proved useful in patients with dysphagia caused by stricture or neurological deficit and in those with endotracheal tubes in situ. Postoperative feeding may be facilitated by a nasojejunal tube passed at the end of the main operation. Several endoscopic methods of tube placement have been developed. Tubes passed alongside the endoscope may be grasped by biopsy forceps and placed under direct vision. The tube may either be passed directly down the biopsy channel or 10 cm retrogradely up the biopsy channel to be dislodged by biopsy forceps when in position. These techniques are often unsuccessful when attempting intubation of strictures of the oesophagus, stomach, pylorus, duodenum or anastomoses. At this hospital we have developed an endoscopic “Seldinger wire” technique, which has proved simpler, more versatile, and more reliable than previous methods (Jones BJM, Hatfield ARW, unpublished observations).

When the pernasal route is unavailable, pharyngostomy, gastrostomy, or jejunostomy feedings may be indicated. The surgical techniques entailed have been described elsewhere. It should be emphasised that it is simpler to place a fine needle catheter jejunostomy or nasojejunal tube.
Enteral feeding: techniques of administration

at the time of the initial operation, although neither need to be used if oral intake can be restarted without undue delay. Such tubes can be used for early postoperative nutrition now that it has been recognised that small bowel function returns much earlier than gastric emptying.24 25 A clinical nutrition team must be able to offer advice and expertise in all aspects of tube feeding if enteral rather than parenteral nutrition is to be offered to the maximum number of patients.

Bolus or continuous infusion?

Traditional bolus feeding requires a large bore tube to assess residual gastric contents before the next feed and to enable rapid administration. This requires one hour/day more nursing time than continuous feeding26 and carries with it the risks of large bore tubes. Furthermore, if pre-feed residuum is considerable and discarded it may be impossible to satisfy nutritional requirements. Bolus feeding, however, may be more physiological with regard to insulin secretion but may be less effective in promoting nitrogen repletion and weight gain.7 The main objection to this method is the incidence of gastrointestinal side effects such as regurgitation and diarrhoea.1 26 There is now general agreement that jejunal feeding should be by continuous infusion,1 7 17 but the intragastric route remains controversial. It has been shown that nasogastric boluses of 500 ml given at 60 ml/minute are well tolerated and small volumes may be given even faster.7 Early rapid phase gastric emptying of 500 ml boluses, however, may allow part of the meal to reach the ileum.7 Any colonic spillage could result in diarrhoea. Although bolus feeding is cheap and simple, there are now several studies providing clear evidence in favour of continuous nasogastric infusion in infants27 and adults.28

Particular care must be taken, however, with unconscious patients, or those with neurological dysphagia, or endotracheal tubes who are at high risk of regurgitation and aspiration.29 In one necropsy series of neurological patients pulmonary aspiration was undiagnosed and commoner in nasogastrically fed patients.30 The incidence of aspiration, however, was only 1-4% of 634 patients fed by continuous nasogastric infusion, and there was a high percentage of patients at risk.31 To prevent this complication transpyloric feeding has been advocated with simultaneous aspiration of gastric contents.29 If nasogastric feeding is to be given to high risk patients it seems prudent to do so via large bore tubes initially, so that frequent assessment of gastric emptying can be made. Continuous infusion is less likely to overwhelm gastric emptying and provoke vomiting or regurgitation,17 32 but feeding should probably be discontinued before chest physiotherapy. No controlled trials of continuous intragastric versus transpyloric feeding have yet been performed with high risk patients, although nutrient delivery is similar by the two routes.33 Patients with loss of pyloric control and those with impaired small bowel function should always be fed by continuous infusion, and a pump may be necessary to ensure this.9 Despite continuous infusion diarrhoea still occurs in up to 25% patients receiving polymeric or elemental diets, but concurrent broad spectrum treatment with antibiotics can be implicated in all but a few cases.3 34 35

Starter regimens

The most controversial topic at present is the value of incremental starter regimens in avoiding gastrointestinal side effects. Such problems are traditionally attributed to the hyperosmolality of undiluted feeds.16 Traditional starter regimens may prevent satisfaction of nutritional demands over the first three to four days of feeding.35 36 Controlled data now available have cast doubt on this practice, there being no difference in the incidence of diarrhoea between a hypotonic starter regimen, an isotonic regimen, and an undiluted hypertonic polymeric diet given by gravity assisted continuous infusion.35

The final volume of feed required will depend on its energy and nitrogen density, which in turn must be based on water requirements (or restrictions) and nutritional needs.

References

Enteral feeding: techniques of administration.

B J Jones

Gut 1986 27: 47-50
doi: 10.1136/gut.27.Suppl_1.47

Updated information and services can be found at:
http://gut.bmj.com/content/27/Suppl_1/47.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Diarrhoea (663)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/