Comparison of ultrasonography, computed tomography and 99mTc liver scan in diagnosis of Budd-Chiari syndrome

S GUPTA, S BARTER, G W L PHILLIPS, R N GIBSON, AND H J F HODGSON

From the Departments of Medicine and Radiology, Hammersmith Hospital, Royal Postgraduate Medical School, London

SUMMARY Ultrasonography, computed tomography and 99mTc liver scanning are all useful in diagnosis of patients with the Budd-Chiari syndrome. In a study to determine their comparative value characteristic findings were recorded in all nine patients at ultrasonography and in seven patients at computed tomography. In contrast 99mTc liver scan showed a characteristic pattern in only one of eight patients. In our experience intrahepatic venous anomalies were seen better at ultrasonography than at computed tomography. In addition, abnormality in the direction of blood flow could be detected by pulsed Doppler examination. Ultrasonography is relatively inexpensive, readily accessible, does not require administration of radiation or contrast agents and therefore should be the primary non-invasive investigation of patients with Budd-Chiari syndrome, or those at risk of developing it.

The diagnosis of Budd-Chiari syndrome is generally made by either liver biopsy or hepatic venography. Although it is often commented that liver biopsy may not be possible in many of these patients, this has been only occasionally so in our experience and that of others. The major disadvantages of liver biopsy and venographic studies, however, are that they are invasive, require expertise and may be available only in specialised centres. Furthermore, neither of these techniques is ideally suited for screening or monitoring the course of the illness. Budd-Chiari syndrome may be more common than is realised as a diagnosis may be made more often with greater awareness and therefore rapid, non-invasive means which might suggest the condition are desirable.

Traditionally, isotope liver scan has been utilised for this purpose and may show a characteristic pattern for central uptake in patients with Budd-Chiari syndrome. Both computed tomography and ultrasound have recently been found to be useful in the diagnosis of Budd-Chiari syndrome. Of these two, ultrasound is advantageous because it is cheaper and widely available. Experience with ultrasonography in Budd-Chiari syndrome, however, is limited.

We have studied the diagnostic features at ultrasonography in nine patients of Budd-Chiari syndrome. A comparison with computed tomography and 99mTc liver scanning was carried out to determine which of the three should be the non-invasive investigation of choice.

Methods

Patients

Studies were carried out on nine patients with Budd-Chiari syndrome. Four patients were of a recent onset, five had long standing disease. The diagnosis was made in all patients by hepatic venography and in addition liver histology in eight patients showed a characteristic pattern of sinusoidal dilatation and congestion along with perivenous hepatocellular atrophy. The clinical details of these patients are summarised in Table 1. There were four men and five women in the age range of 27–48 years.
The radiological investigations done in the five patients with chronic disease were reviewed. Ultrasonography, Tc liver scans, and venographic studies were done in all patients at the time of the initial referral and all but one patient also had computed tomography, which was carried out simultaneously in all patients. The duration of symptoms before the diagnosis was made is listed in Table 1. One patient in this group died (patient 2, Table 1), but the remaining four have been under regular follow up and all had recent ultrasound scans to verify previous findings. Ultrasonography was the initial investigation in the four patients of recent onset and the diagnosis was confirmed subsequently by angiography in all. Three of these patients had Tc liver scans and all had computed tomography of the abdomen. Follow up ultrasound scans were carried out within two to four weeks on all these patients.

EQUIPMENT

Ultrasonography

Real time ultrasound examination was carried out using a Toshiba SAL 50A, 5 MHz linear array scanner or a Diasomics 400 CV 3-5 MHz mechanical sector scanner. In addition the direction of flow in venous collaterals was determined in three patients using a Diasomics 3-5 MHz cardiac probe with 3-0 KHz Doppler.

All examinations included assessment of the confluence of veins draining into the inferior vena cava, presence or absence of the hepatic veins, alterations in the calibre or the shape of the intrahepatic veins, presence of intrahepatic collaterals, enlargement of the caudate lobe and narrowing of the inferior vena cava. Presence of splenomegaly, ascites and extrahepatic venous collaterals including azygos, hemi-azygos and umbilical vein were noted.

Computed tomography

Examinations were carried out on a Siemens Somatom 2 scanner with contiguous slices of 8 mm thickness and a scan time of five seconds. Scans were done before and after injection of contrast medium (100 ml Urografin 310 M injected intravenously at the rate of 1 ml/sec). All patients also received 1 litre of diluted oral Gastrografin before the examination to opacify bowel loops.

The presence or absence of hepatic veins was noted and hypertrophy of caudate lobe was determined by using the previously described caudate/right lobe ratio. In addition presence of parenchymal abnormalities, distortion or narrowing of the inferior vena cava, presence of dilated azygos vein or collaterals, ascites and splenomegaly were noted.

Tc liver scanning

Technetium –99m labelled sulphur colloid (Amersham International) was used for isotope scanning. Two millicuries (80 MBq) dose of the isotope was administered intravenously and scanning was started 10 minutes later. An International General Electric Maxi camera 400A on line to a Medtronics Data Systems computer was used to take views in anteroposterior, posteroanterior, right and left lateral positions. Tomographic sections were also generated.

Presence of liver or splenic enlargement, homogeneity of uptake of the isotope by the liver and caudate lobe enlargement were determined.

RESULTS

The findings at radiological investigations are summarised in Table 2. There were abnormalities on ultrasound examination in all nine patients. The normal confluence of hepatic veins into the inferior vena cava could not be demonstrated in any patient, although it is generally an easily recognised feature in normal individuals (Fig. 1). Clearly defined, outflowing hepatic veins were absent although distorted middle and right hepatic veins were present in one patient (Fig. 2) and a left hepatic vein with an irregular calibre could be seen in two patients. In these three patients pulsed Doppler examination
Table 2 Summary of various radiological investigations

<table>
<thead>
<tr>
<th>Patient no</th>
<th>Hepatic venography</th>
<th>Liver biopsy</th>
<th>Liver scan</th>
<th>CT Abnormal parenchyma ratio</th>
<th>Caudate/right lobe veins</th>
<th>Intrahepatic veins</th>
<th>Ultrasound Confluence at IVC</th>
<th>Intrahepatic veins and collaterals</th>
<th>Caudate lobe</th>
<th>IVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stenosis and partial occlusion of main hep veins. Multiple collaterals. IVC patent</td>
<td>+</td>
<td>Slight enlargement left lobe</td>
<td>+</td>
<td>Enlarged caudate lobe (1-0)</td>
<td>Absent</td>
<td>Narrowed</td>
<td>Absent Distorted middle and right hepatic vein</td>
<td>Enlarged</td>
<td>Narrowed</td>
</tr>
<tr>
<td>2</td>
<td>Major hep veins occluded. Spider-web collaterals. IVC displaced and narrowed</td>
<td>+</td>
<td>Central accumulation. Spleen enlarged</td>
<td>-</td>
<td>Enlarged caudate lobe (1-7)</td>
<td>Absent</td>
<td>Narrowed</td>
<td>Absent Abnormal collaterals only</td>
<td>Enlarged</td>
<td>Narrowed</td>
</tr>
<tr>
<td>3</td>
<td>Complete occlusion hep veins. IVC narrowed</td>
<td>+</td>
<td>Areas of patchy uptake. Spleen enlarged</td>
<td>+</td>
<td>Enlarged caudate lobe (0-67)</td>
<td>Absent</td>
<td>Normal</td>
<td>Absent Abnormal collaterals only</td>
<td>Enlarged</td>
<td>Normal</td>
</tr>
<tr>
<td>4</td>
<td>Occlusion of all except one narrowed vein. IVC normal</td>
<td>+</td>
<td>Patchy uptake. Spleen enlarged</td>
<td>-</td>
<td>Possible enlargement (0-56)</td>
<td>Inadequate study</td>
<td>Absent</td>
<td>Absent Abnormal venous channels only</td>
<td>Enlarged</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>Complete occlusion hep veins. IVC patent</td>
<td>+</td>
<td>Slight liver enlargement</td>
<td>Not performed</td>
<td></td>
<td></td>
<td>Absent</td>
<td>Only one hep venous collateral draining into IVC</td>
<td>Enlarged</td>
<td>Normal</td>
</tr>
<tr>
<td>6</td>
<td>Narrowed and irregular left vein, dilated right vein. IVC patent</td>
<td>+</td>
<td>Patchy uptake. Spleen enlarged</td>
<td>-</td>
<td>Enlarged caudate lobe (0-88)</td>
<td>Absent</td>
<td>Normal</td>
<td>Absent Enlarged and irregular hep veins</td>
<td>Enlarged</td>
<td>Normal</td>
</tr>
<tr>
<td>7</td>
<td>Occlusion of all hep veins. Spider-web collaterals. IVC normal</td>
<td>+</td>
<td>Slightly patchy uptake. Spleen enlarged</td>
<td>+</td>
<td>Enlarged caudate lobe (0-94)</td>
<td>Absent</td>
<td>Normal</td>
<td>Absent Only stenosed, irregular left hep vein</td>
<td>Enlarged</td>
<td>Narrowed</td>
</tr>
<tr>
<td>8</td>
<td>Left hep vein occluded. Right hep vein normal but tributaries occluded. IVC patent</td>
<td>+</td>
<td>Patchy uptake</td>
<td>-</td>
<td>Enlarged caudate lobe (0-85)</td>
<td>Absent</td>
<td>Normal</td>
<td>Absent Abnormal collaterals only</td>
<td>Enlarged</td>
<td>Normal</td>
</tr>
<tr>
<td>9</td>
<td>All hepatic veins occluded. IVC patent</td>
<td>-</td>
<td>Not performed</td>
<td>+</td>
<td>Enlarged caudate lobe (0-64)</td>
<td>Absent</td>
<td>Normal</td>
<td>Absent Left hep vein only seen</td>
<td>Enlarged</td>
<td>Normal</td>
</tr>
</tbody>
</table>
showed that the blood flow via their veins was in an abnormal direction, away from the hepatic vein ostia. The venous structures which could be demonstrated on the region of the ostia were prominent collateral network of small, tortuous vessels. This pattern was seen in all patients with long standing disease. The caudate lobe was enlarged in all cases (Fig. 3).

In three patients the inferior vena cava was narrowed and in two it was almost occluded by the enlarged caudate lobe. Less specific findings as a result of portal hypertension included enlarged retroperitoneal collaterals from the azygos and hemi-azygos systems, patent umbilical vein, splenomegaly and ascites (Fig. 4). Five patients were known to have gastro-oesophageal varices at endoscopy but these were not detected by ultrasonography, known to be inferior to endoscopy in detecting varices. Follow up ultrasound scans in four patients with recent onset of symptoms showed development of abnormal intrahepatic venous structures and collaterals. It was difficult to quantitate rigorously the extent of collateral flow or the degree of caudate lobe enlargement.

Fig. 1 Transverse scan of liver showing normal confluence of hepatic veins and inferior vena cava (IVC).

Fig. 2 Transverse ultrasound scan of the liver in patient with Budd-Chiari syndrome, showing a tortuous intrahepatic venous collateral.
Computed tomography showed an enlarged caudate lobe with low attenuation elsewhere in seven patients and equivocal enlargement in one patient. In four patients the caudate lobe was enlarged with abnormal attenuation. Intrahepatic veins did not fill after administration of contrast in seven patients. In one patient postcontrast studies were inadequate to evaluate venous filling. Other abnormalities were demonstration of narrowing of the inferior vena cava by the enlarged caudate lobe in two patients, ascites in four patients, enlarged azygos vein in two patients, and enlargement of spleen in five patients.

Of the three investigations ""Tc liver scan was the least specific. Central accumulation of the isotope as described characteristically with caudate lobe enlargement was seen in only one of eight patients. Liver or splenic enlargement was identified and areas of patchy uptake of the isotope were present in five patients.

If demonstration of abnormalities in hepatic veins or enlargement of caudate lobe are taken as specific diagnostic features, although caudate lobe enlargement is of course possible in other circumstances, ultrasonography and computed tomography were successful in making a diagnosis in all patients, and ""Tc liver scanning only 12.5%.

Discussion

Before the advent of ultrasonography and computed tomography, non-invasive screening and monitoring of patients with Budd-Chiari syndrome was carried out by ""Tc liver scanning. ""Gallium liver scanning has recently been reported to be useful. In our experience, however, the characteristic central accumulation of the isotope is seen rarely and liver scans are a relatively poor means of making a diagnosis, perhaps because of variable preservation of liver function in different lobes.

This study indicates that the diagnostic accuracy of ultrasound in Budd-Chiari syndrome is similar to angiography. Absence of hepatic veins at the normal venous confluence at the inferior vena cava, abnormal intrahepatic collaterals and enlarged caudate lobe are of maximum discriminant value. Computed tomography is similarly successful in suggesting the diagnosis. The overall pattern of venous abnormalities and intrahepatic collaterals, however, is relatively clearer at ultrasonography and in suitably trained hands a diagnosis can possibly be made with greater conviction.

There are a number of other reasons for which ultrasound theoretically may prove to be advantageous in the diagnosis of Budd-Chiari syndrome. It has been recognised recently that in this condition venous occlusion may not be total and partial thrombosis has been described both in patients and in experimental conditions. In these circumstances an inability to cannulate the venous ostia at venography, or non-filling of hepatic vein side branches, both of which are taken as evidence of venous occlusion, may generate erroneous information which could be corrected by ultrasonography. Narrowing or dis-
placement of the inferior vena cava by an enlarged cava
duct lobe in some patients may simulate lesions
such as tumors or abscesses. Venography alone
does not differentiate between such lesions
and further imaging by computed tomography or arteri-
ography is often necessary. In the Far East venous
webs are relatively common cause of Budd-Chiari
syndrome. The ultrasonographic appearances of
webs in the inferior vena cava are not known to us,
and as webs are very thin, it is conceivable that they
might only be detected with difficulty, but proximal
dilatation of the hepatic veins might be expected.

Another advantage of ultrasound is the demonstra-
tion of features of portal hypertension such as
enlarged retroperitoneal veins or a patent umbilical
vein, which may reflect the severity of venous
occlusion of liver damage, and also associated portal
vein or splenic vein thrombosis are obviously not
demonstrable by hepatic venography alone.

When ultrasound examination was repeated over
two to four weeks in patients with recent onset
of symptoms, it was possible to see evolution of the
lesions, notably with development of intrahepatic
collaterals. The direction of flow in collaterals was
also demonstrable using pulsed Doppler ultrasound,
which showed abnormal intrahepatic channels with
blood flowing away from the site of the hepatic vein
ostia. Although we have no evidence from this study,
it is possible that ultrasound monitoring of the
development of collaterals might correlate well with
a good outcome from conservative management, or
alternatively define a group of individuals with poor
collateral development, in whom surgical inter-
vention might be required. We hope that prospective
studies will investigate this.

The evidence in this study, however, shows that
ultrasound is an effective tool in the detection of
Budd-Chiari syndrome, clearly superior to isotope
liver scan, and detection of normal ultrasonic findings
in a patient in whom the diagnosis of Budd-Chiari has
been considered should obviate the need for angi-
ographic demonstration of the hepatic veins.

References
1. Tavill AS, Wood EJ, Kreel J, Jones EA, Gregory M,
Sherlock S. The Budd-Chiari syndrome: correlation
between hepatic scintigraphy and the clinical, radi-
ological and pathological findings in nineteen cases
of hepatic venous outflow obstruction. Gastroenterology
Maddrey WC. Budd-Chiari syndrome: etiology, diag-
3. Cahn D, Freton J, Kreel L, Sherlock S. Clinical
diagnosis of Budd-Chiari syndrome. A report of six
4. Maddrey W. Hepatic vein thrombosis (Budd-Chiari
of Budd-Chiari syndrome by computed tomography
and ultrasonography: report of five cases. Gastroenterology
1983; 84: 587–95.
6. Harbin WP, Robert NJ, Ferrucci JT. Diagnosis of
cirrhosis based on regional changes in hepatic
morphology. A radiological and pathological analysis.
HJF. Budd-Chiari syndrome and alpha-1 antitrypsin
8. Meindok H, Langer B. Liver scan in Budd-Chiari
9. Thijs LG, Heidendal GAK, Huigen PC, Mol JJ,
Verkuyl M. The use of nuclear medicine procedures
10. Staab EV, Hartman RC, Parrott JA. Liver imaging
in the diagnosis of hepatic venous thrombosis in paroxysmal
11. Rossleigh MA, Uren RF, Morris JG. Radionuclide liver
scan. A screening test for the Budd-Chiari syndrome.
G. CT diagnosis of Budd-Chiari syndrome. J Comput Assist
13. Yang PJ, Glazer GM, Bowerman RA. Budd-Chiari
syndrome: computed tomography and ultrasonographic
ultrasonic appearance of the liver in hepatic venous
outflow obstruction (Budd-Chiari syndrome). J Clin
15. Makuuchi M, Hasegawa H, Yamazaki S, Moriyama
N, Takayasu K, Okazaki M. Primary Budd-Chiari
syndrome: Ultrasonic demonstration. Radiology 1984; 152:
775–9.
R. Diagnosis of Budd-Chiari syndrome by liver ultra-
sound and colloid scintigraphy. [Abstract]. Gut 1985;
26: A568.
17. Subramanyam BR, Balthazer EJ, Madamba MR,
Raghavendra BN, Horri SC, Lefleur RS. Sonography
of portosystemic venous collaterals in portal hypertension.
liver imaging for the early diagnosis of Budd-Chiari
Unilobar small hepatic vein obstruction: possible role of
progestogen given as oral contraceptive. Gastro-
enterology 1983; 84: 630–5.
20. Maguire R, Doppman JL. Angiographic abnormalities
in partial Budd-Chiari syndrome. Radiology 1977; 122:
629–35.
C. Partial Budd-Chiari syndrome. J Comput Assist
22. Takeuchi J, Takada A, Hasumura Y, Matsuda Y,
Ikegami F. Budd-Chiari syndrome associated with
obstruction of the inferior vena cava: A report of seven
Comparison of ultrasonography, computed tomography and 99mTc liver scan in diagnosis of Budd-Chiari syndrome.
S Gupta, S Barter, G W Phillips, R N Gibson and H J Hodgson

Gut 1987 28: 242-247
doi: 10.1136/gut.28.3.242

Updated information and services can be found at:
http://gut.bmj.com/content/28/3/242

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/