Intramural distribution of regulatory peptides in the sigmoid-recto-anal region of the human gut

G-L FERRI, T E ADRIAN, JANET M ALLEN, L SOIMERO, ALESSANDRA CANCELLIERI, JANE C YEATS, MARION BLANK, JULIA M POLAK, AND S R BLOOM

From the Department of Anatomy, ‘Tor Vergata’ University, Rome, Italy and Departments of Medicine and Histochemistry, RPMS, Hammersmith Hospital, London

SUMMARY The distribution of regulatory peptides was studied in the separated mucosa, submucosa and muscularis externa taken at 10 sampling sites encompassing the whole human sigmoid colon (five sites), rectum (two sites), and anal canal (three sites). Consistently high concentrations of VIP were measured in the muscle layer at most sites (proximal sigmoid: 286 (16) pmol/g, upper rectum: 269 (17), a moderate decrease being found in the distal smooth sphincter (151 (30) pmol/g). Values are expressed as mean (SE). Conversely, substance P concentrations showed an obvious decline in the recto-anal muscle (mid sigmoid: 19 (2.0) pmol/g, distal rectum: 7.1 (1.3), upper anal canal: 1.6 (0.6)). Somatostatin was mainly present in the sigmoid mucosa and submucosa (37 (9.3) and 15 (3.5) pmol/g, respectively) and showed low, but consistent concentrations in the muscle (mid sigmoid: 2.2 (0.7) pmol/g, upper anal canal: 1.5 (0.8)). Starting in the distal sigmoid colon, a distinct peak of tissue NPY was revealed, which was most striking in the muscle (of mid sigmoid: 16 (3.9) pmol/g, upper rectum: 47 (7.8), anal sphincter: 58 (14)). Peptide YY was confined to the mucosa and showed an earlier peak (upper sigmoid: 709 (186) pmol/g, mid-distal sigmoid: 1965 (484)). A clear differential distribution of regulatory peptides was thus shown in the region studied. A possible role is suggested for NPY and VIP containing nerves in the effector control of the human internal anal sphincter.

The whole region of the human gut composed of the sigmoid colon, rectum and anal canal can probably be considered as a complex regulatory area, devoted to the final processing and expulsion of bowel contents, culminating in defecation. In fact, although distinct sphincteric structures are conspicuously absent at this level, the rectosigmoid junction itself has been proposed to act as a regulatory zone. Below the rectum, a well defined smooth sphincter – that is, the internal anal sphincter, is found at the termination of the alimentary canal.

Within this complex region, intrinsic nerves appear to play a crucial role. This is clearly the case for the inhibitory control of the internal anal sphincter, exerted by the rectoanal reflex and largely mediated by intramural pathways, which proved to be non-adrenergic, non-cholinergic.

Because little information is available on the peptide containing innervation of this region of the human gut, we have investigated this aspect in detail. At each of 10 sampling sites distributed along the whole region, the main layers of the wall – that is, mucosa, submucosa and muscularis externa, were separated and the concentrations of VIP, substance P, somatostatin, NPY, mammalian bombesin and PYY were measured by radioimmunnoassay. In view of the immunochemical methods used, results described will refer to peptide like immunoreactivity throughout.

Methods

Fresh tissues were obtained from six specimens of abdominoperineal resection of the sigmoid colon and
rectum, because of colonic or rectal carcinoma (patients’ mean age 67-5 years, range 61-79, three men and three women). Only specimens devoid of advanced luminal obstruction and/or proximal dilatation were investigated, while no tissue was taken for the present investigation before sampling for diagnostic histopathology had been completed.

The sampling plan used is summarised in Figure 1. One sample was taken at each of the equidistant sites 1-5, along the distal 30 cm of colon (thus virtually covering the whole sigmoid). One sample each was taken from the proximal and distal halves of the rectal ampulla (sites 6 and 7, respectively). Three adjacent strips, 7-9 mm wide, were taken across the anal canal (sites 8 to 10), the middle one (site 9) terminating at the distal margin of the smooth sphincter. Tissue samples (n=6, except sites 6 and 7: n=5) were taken over 5 cm away from the tumour margin, free of mesenteric (or epiploic) fat and other structures surrounding the gut wall. Histology was checked in parallel samples, in order to exclude neoplastic infiltration in the vicinity of the processed tissues.

Samples were separated by microdissection into mucosa (containing epithelium and lamina propria), submucosa and muscularis externa, as previously described in detail. From the most distal site (number 10), skin and subjacent connective and/or adipose tissue were obtained in a similar way. For peptide extraction, layers were coarsely chopped with a scalpel, weighed and dropped into preheated polypropylene tubes, containing 0-5 mol/l acetic acid (approximately 10 ml/g) in a vigorously boiling water bath for 15 minutes. After a further 30 minutes at room temperature (with slow constant agitation), tubes were briefly spun and supernatants were stored frozen (at -70°C). Radioimmunoassays were performed as previously described in detail using the antisera listed in the Table.

Table Antisera specificity

<table>
<thead>
<tr>
<th>Antiserum</th>
<th>Specificity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP</td>
<td>N-terminal</td>
<td>(9)</td>
</tr>
<tr>
<td>Substance P</td>
<td>C-terminal</td>
<td>(9)</td>
</tr>
<tr>
<td>Mammalian bombesin</td>
<td>C-terminal</td>
<td>(9)</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>C-terminal</td>
<td>(9)</td>
</tr>
<tr>
<td>NPY</td>
<td>N-terminal</td>
<td>(10)</td>
</tr>
<tr>
<td>PYY</td>
<td>N-terminal</td>
<td>(11)</td>
</tr>
</tbody>
</table>

* the antisera measures fully whole mammalian bombesin (gastrin-releasing peptide 1–27) and the decapeptide of mammalian bombesin (gastrin-releasing peptide 18–27); † not cross-reacting with PYY (<0-1%); ‡ not cross-reacting with NPY (<0-01%).

Results

Of the various peptides studied, VIP, substance P, somatostatin and NPY were detected in all three layers, while bombesin was mainly represented in the muscle. Conversely, PYY was virtually confined to the separated mucosa (99-2 (0-4)% of the total content, mean (SE)). The concentration profile of each peptide is shown in Figs 2–4.

Vasoactive intestinal polypeptide (Fig. 2, left) was most abundant in the separated mucosa at all levels, lower concentrations being shown in the anal skin. Considerable amounts of the same neuropeptide were revealed in the submucosa and muscle layer, too, throughout the extension of the internal anal sphincter. Conversely, substance P (Fig. 2, right) appeared to be little represented beyond the rectum, its muscular concentrations already declining at the distal rectal site.

Somatostatin immunoreactivity (Fig. 3, left) was present mainly in the mucosa and, to a lesser extent, in the submucosa, in which layers it showed a marked decrease in concentration across the rectum. In the muscle layer, this peptide showed much lower, but consistent tissue levels down to the proximal anal canal.

Measurable concentrations of NPY (Fig. 3, right) were found in all layers, with the exception of the mucosa of most of the sigmoid colon (sites 1 to 4). A clear increase in NPY concentration was found distally, the lower rectum and anal canal showing a distinct peak, most evident in the muscle. A similarly striking, but earlier, peak was demonstrated for PYY concentrations in the mucosa (Fig. 4, upper panel) between the mid-distal sigmoid and the proximal rectum. Mammalian bombesin (Fig. 4, lower panel) was largely confined to the sigmoid colon, layers other than muscle containing barely detectable amounts of this peptide.
Fig. 2 Concentrations of vasoactive intestinal polypeptide (VIP: left) and substance P (Subs. P: right) in the three separated layers— that is mucosa (containing epithelium and innervated lamina propria), submucosa and muscularis externa (muscle = circular and longitudinal muscle with intervening myenteric plexus) across the sigmoid-recto-anal region (sigmoid = sigmoid colon, anus = anal canal; no distinct muscle layer was present at site 10, which was taken distal to the smooth sphincter; means (SE); *=<1 pmol/g).

Discussion

A distinct differential distribution of regulatory peptides was shown along the sigmoid-recto-anal region of the human gut. Peptide concentrations measured in the sigmoid colon are largely in keeping with previous human studies, which described the molecular characterisation of the same peptides and their distribution as far down as the colon. Minor differences in somatostatin tissue concentrations, as measured in the human gut by various laboratories are probably due to differing characteristics of the antisera used, or to the varied tissue storage and extraction procedures used.

A previous study, carried out mainly in the cat and not including the internal anal sphincter, concluded that ‘a rich VIP nerve supply is characteristic of sphincters.’ As far as peptide distribution may be taken to reflect the density of peptide containing nerves, a comparative abundance of VIP nerves can
Peptides in human sigmoid-rectum-anus

be stated for the muscle layer in coincidence with the human internal anal sphincter, various other neuropeptides almost disappearing at this level. Species specific patterns, however, may occur, as very low VIP concentrations were shown in the cat anus. In man, it is worth noting that the pro-enkephalin A-derived peptide Met5-enkephalin-arg4-gly3-leu5, too, was little represented beyond the human sigmoid colon.

The presence of VIP and NPY in considerably high concentrations in the muscle layer of the human anal canal may suggest a role for such peptides in the effector control of the smooth anal sphincter. The recto-anal reflex, which inhibits the high intrinsic tone of the internal anal sphincter via a neural non-adrenergic, non-cholinergic mechanism has been mentioned. Indeed, VIP is well known to relax gut smooth muscle, including that of the internal anal sphincter. This same peptide has been proposed as a mediator of gut inhibitory nerves and, specifically, of the recto-anal reflex in the rabbit.

A complex distribution was revealed for NPY in

Fig. 3 Concentrations of somatostatin (SRIF: left) and neuropeptide Y (NPY: right) in the three separated layers—that is, mucosa (containing epithelium and innervated lamina propria), submucosa and muscularis externa (muscle=circular and longitudinal muscle with intervening myenteric plexus) across the sigmoid-recto-anal region (sigmoid=sigmoid colon, anus=anal canal; no muscle layer was present at site 10, which was taken distal to the smooth sphincter; means (SE); * =<0.5 pmol/g for somatostatin, <10 for NPY).
peptide has a powerful vasoconstrictory effect, so that perivascular NPY fibres may be involved in gut vasomotor control.

The distribution of bombesin like peptides, largely confined to the muscle, confirms previous findings obtained in the human duodenum, jejunum, ileum, and colon. A study has been reported, in which the human gut wall had been split into preparations of mucosa and ‘muscle’ (the latter apparently also including submucosa), both of which showed similar bombesin concentrations at most levels. It is relevant to note, however, that human postmortem specimens were used in the latter investigation.

A recent study showed an inhibitory effect of somatostatin on the basal tone of human rectal musculature. Thus, even the small amounts of somatostatin shown in the rectal muscularis might have a functional significance. The main localisation of this neuroendocrine peptide, however, was shown to be in the endocrine cell containing mucosa, as in other areas of the human gut. Finally, the other endocrine peptide studied — that is, PYY, showed a very clear peak between distal sigmoid and upper rectum. Such finding appears to stress the proposed role of PYY in the distal hormonal inhibition of a variety of digestive functions, including gastric emptying, colonic motility and blood flow.

Most specimens were kindly provided by L Tonelli and G Biliotti, University of Firenze, Italy. The authors are indebted to G Siracusa, A Riva, and V Eusebi for encouragement and stimulation during the progress of this work, to V Eusebi and A M Mancini for laboratory hospitality. Partly supported by an Italian National Research Council (CNR) Research Contract.

References

10 Allen JM, Yeats JC, Adrian TE, Bloom SR. Radioimmunoassay of neuropeptide Y. Regul Pept 1984; 8: 61–70.
34 Allen JM, Adrian TE, Tatemoto K, Polak JM, Hughes J, Bloom SR. Two novel peptides, neuropeptide Y (NPY) and peptide YY (PYY) inhibit the contraction of the electrically stimulated mouse vas deferens. Neuropeptides 1982; 3: 71–7.
40 Lundberg JM, Tatemoto K, Terenius L, et al. Localisation of peptide YY (PYY) in gastrointestinal endocrine...

Intramural distribution of regulatory peptides in the sigmoid-recto-anal region of the human gut.

G L Ferri, T E Adrian, J M Allen, L Soimero, A Cancellieri, J C Yeats, M Blank, J M Polak and S R Bloom

Gut 1988 29: 762-768
doi: 10.1136/gut.29.6.762

Updated information and services can be found at:
http://gut.bmj.com/content/29/6/762

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Gastrointestinal hormones (848)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/