Stimulation of amphibian gastroduodenal bicarbonate secretion by sucralfate and aluminium: role of local prostaglandin metabolism

J R Crampton, L C Gibbons, and W D W Rees

From the University of Department of Medicine Addenbrooke's Hospital, Cambridge and Department of Gastroenterology, Hope Hospital, University of Manchester, School of Medicine, Salford

SUMMARY The present studies were designed to explore the possible mode of protective and ulcer healing actions of sucralfate by examining its effect on gastroduodenal bicarbonate secretion by isolated amphibian mucosa. Luminal sucralfate (0.5 g/l) significantly increased bicarbonate secretion by fundic and antral mucosa without influencing transmucosal potential difference. Significant stimulation of duodenal bicarbonate secretion occurred only at 1.0 g/l without change in potential difference. Aluminium, a component of sucralfate, produced similar increases in bicarbonate secretion, while the sucrose and sulphate components were without effect. Pretreatment of mucosae with the cyclooxygenase inhibitor, indomethacin (10⁻⁵ M) did not abolish the secretory response to sucralfate or aluminium. The results suggest that stimulation of gastroduodenal bicarbonate secretion, possibly by the aluminium moiety of sucralfate, may play a role in its protective and ulcer healing actions.

Sucralfate is a basic aluminium salt of sucrose sulphate and has been shown to protect gastric mucosa from experimental damage.¹ Prevent bleeding from stress ulceration;² and heal peptic ulcers.³ ⁴ The drug was initially thought to act by adhering to ulcerated tissue and forming a physical barrier to injury by acid, pepsin, and bile salts.⁵ ⁶ Recent evidence has suggested that sucralfate may have a direct protective action on the gastroduodenal mucosa, possibly mediated by changes in local prostaglandin E₂ metabolism.⁷ Such an action may be shared by other compounds containing aluminium such as antacids, raising the possibility that this component may be vital to the protective action of sucralfate.⁸ The current series of experiments were designed to further explore the mechanism of mucosal protection by sucralfate by studying its action and that of aluminium on gastroduodenal bicarbonate secretion, an important component of the 'mucus-bicarbonate' barrier.⁹

Methods

FROGS The studies on gastroduodenal bicarbonate secretion were performed on gastric and duodenal mucosal obtained from either Rana temporaria (Xenopus, UK) or Rana catesbeiana (St Croix Biologicals, Minneapolis, Minnesota, USA). All animals were kept at 21°C and used within three weeks of purchase.

STUDIES ON GASTRIC MUCOSA The method used to measure electrical and secretory activity of gastric mucosa has been previously described in detail.¹¹ Briefly, gastric mucosa was dissected free from its muscularis externa and mounted as a membrane (surface area 1.8 cm) between two halves of a perspex chamber. Each surface was bathed with 20 ml solution circulated by means of gas lifts. The unbuffered luminal side solution was gassed with 100% oxygen and the buffered serosal side solution with a mixture of 95% oxygen and 5% carbon dioxide. The pH of the
The luminal side solution was maintained at pH 7.40 by the addition of 5 mM hydrochloric acid from a pH stat system (ABU 13 and TT2, Radiometer, Copenhagen, Denmark).

Spontaneous output of acid by fundic mucosa was inhibited by adding 10⁻² M cimetidine to the serosal side solution. Antral mucosa spontaneously secreted alkali. Transmucosal potential difference was measured by means of matched electrodes (Russel Electrodes, Fife, Scotland) and continually recorded while electrical resistance was determined from the fall in recorded potential difference produced by passing a 30 μA current through the tissue via silver/silver chloride electrodes. The mucosal and serosal solutions were maintained at 20°C by water jackets perfused by a Haake G circulator (Karlsruhe, W. Germany).

Studies on Duodenal Mucosa

The duodenal mucosa was stripped of muscularis externa and mounted as an intact tube on glass cannulae as previously described. The luminal surface was bathed with 10 ml unbuffered solution, circulated by 100% oxygen gas lift and maintained at pH 7.40 using pH stat titration as described above. The serosal surface was bathed with 120 ml buffered solution gassed with a mixture of 95% oxygen and 5% carbon dioxide. Transmucosal potential difference was measured and recorded as described above and the bathing solutions maintained at 20°C.

Bathing Solutions

The serosal solution bathing gastric and duodenal mucosae contained Na⁺, 102.4 mM; K⁺, 4.0 mM; Ca²⁺, 1.8 mM; Mg²⁺, 0.8 mM; Cl⁻, 91.4 mM; HCO₃⁻, 17.8 mM; H₂PO₄⁻, 0.8 mM; SO₄²⁻, 0.8 mM; and glucose 2 mM (Osmolarity=220 mosmol and pH=7.20). The luminal solution differed in that HCO₃⁻ and H₂PO₄⁻ were replaced by mannitol (11.3 mM) to maintain the osmolarity. Titrant acid was identical to luminal solution except for the addition of 5×10⁻³ M hydrochloric acid.

Drugs and Chemicals

Sucralfate was obtained as the amorphous powder (Ayerst Laboratories, Hampshire, England) and prepared at room temperature as a suspension in saline so that additions of 200 μl to bathing solutions produced final concentrations in the range of 0.1 to 1 g/l. Although sucralfate possessed little buffering capacity, the suspensions were titrated to pH 7.40 before addition to the chamber solutions. The pH of such suspensions remained stable and additions to gassed luminal solution in the absence of tissue did not alter the pH.

Indomethacin (Sigma Chemicals Ltd, England) was prepared as a stock solution and added to the serosal side solution to produce a concentration range between 10⁻¹ and 10⁻² M.

Aluminium, in the form of aluminium potassium sulphate and aluminium acetate (Sigma Chemicals Ltd, England), was also prepared as stock solutions (pH 7.40) which did not disturb the pH equilibrium of the luminal solution, in the concentrations used. Potassium sulphate and sucrose (Sigma Chemicals Ltd) were prepared in a similar manner. Sucrose octasulphate (Ayerst Laboratories, Hampshire, England) was prepared to produce final luminal concentrations of 0.5 and 1.0 g/l.

Statistical Analysis

Secretory rates before and after the addition of drugs to the mucosa were compared by a paired t test. Values are expressed as mean (SE).
Stimulation of amphibian gastro-duodenal bicarbonate secretion

Results

In studies on Rana catesbeiana, sucralfate (0.5 g/l) increased the rate of alkaline secretion by fundic mucosa from 0.23 (0.08) to 0.68 (0.10) μmol/cm²/h (p<0.005, n=4) and antral mucosa from 0.29 (0.10) to 0.75 (0.10) μmol/cm²/h (p<0.05, n=4) when added to the luminal solution. The transmucosal potential difference and electrical resistance across these tissues were not altered (Figs 1, 2). In separate experiments, gastric mucosa from Rana temporaria exhibited a linear dose response to sucralfate in the concentration range 0.125–0.5 g/l (Fig. 3). The increased rate of secretion was not transient but persisted during the period of observation (Figs 1, 2).

These concentrations of sucralfate, however, did not influence duodenal bicarbonate secretion.

At a higher concentration of 1 g/l, sucralfate significantly increased duodenal alkaline secretion (Rana catesbeiana) from 1.16 (0.30) to 1.69 (0.30) μmol/h (p<0.05, n=6) without altering transmucosal potential difference (Fig. 4). In dose response studies, a linear relationship between rate of secretion and concentration used was observed, although compared with the gastric studies the curve was shifted to the right (Fig. 3). Addition of sucralfate (0.5 to 1.0 g/l) to the serosal solutions of gastric or duodenal mucosa did not alter the rate of alkaline secretion (results not shown).

Studies of components of sucralfate

In Rana catesbeiana, addition of 3×10⁻³ M aluminium potassium sulphate (equivalent to the total aluminium content of 0.05 g/l sucralfate), to the luminal solution, increased alkaline secretion by fundic (0.79 (0.30) to 2.04 (0.50) μmol/cm²/h, p<0.05, n=6) and duodenal mucosa (1.29 (0.50) to 2.83 (0.60) μmol/h, p<0.05, n=6) without altering transmucosal potential difference (Figs 5, 6). Using gastric mucosa from Rana temporaria, the addition of aluminium acetate (3×10⁻³ M) caused a similar stimulation of alkaline secretion (0.11 (0.01) to 0.42 (0.04) μmol/cm²/h, n=6, p<0.05).

Addition of sucrose or potassium sulphate (sucrose and sulphate concentrations equivalent to those found in 0.5 g/l sucralfate) to the luminal solution of gastric mucosa from Rana temporaria failed to alter alkaline secretion or transmucosal potential difference. Furthermore addition of sucrose octasulphate to the luminal solution failed to significantly increase alkalisation in concentrations of 0.5 g/l (0.44 (0.1) to 0.51 (0.1) μmol/cm²/h, n=7, p: NS) and 1 g/l (0.42 (0.1) to 0.43 (0.1) μmol/cm²/h).

In separate experiments, addition of sucralfate (0.5 to 1.0 g/l) to a chamber containing an inert
membrane (latex rubber) instead of viable mucosa did not result in titrable alkalinity, confirming that sucralfate did not disturb the pH stability of luminal solution.

MECHANISMS OF ALKALI SECRETION BY SUCRALFATE

Because the increase in gastroduodenal alkali secretion was not accompanied by changes in transmucosal potential difference, the secretory response is unlikely to result from mucosal damage, increasing passive bicarbonate diffusion, or electrogenic transport of bicarbonate across epithelial cell membrane. To confirm that the secretory response is dependant on a cellular transport mechanism, the effect of the metabolic inhibitor dinitrophenol (10⁻⁵ M) on the sucralfate effect was studied. Addition of dinitrophenol to gastric mucosa from *Rana temporaria* (serosal side solution) reduced basal alkali secretion from 0.28 (0.05) to 0.13 (0.02) μmol/cm²/h, p<0.05, n=4) and transmucosal potential difference from 14.2 (1.8) to 3.9 (0.5) mV (p<0.05, n=4). Subsequent addition of sucralfate (0.5 g/l) to the luminal solution failed to increase the rate of alkalinisation (0.13 (0.03) to 0.12 (0.02) μmol/cm²/h, n=4, p:NS).

ROLE OF ENDENNOUS PROSTAGLANDINS IN THE RESPONSE TO SUCRALFATE AND ALUMINIUM

At concentrations of 10⁻⁴ M and 10⁻³ M, serosal side application of indomethacin did not prevent the increase in gastric alkali secretion (*Rana temporaria* mucosa) produced by 0.5 g/l sucralfate (0.17 (0.07) to 1.00 (0.06) μmol/cm²/h, n=6, p<0.05 with 10⁻⁵ M indomethacin) or duodenal alkali secretion (*Rana catesbeiana* mucosa) produced by 1.0 g/l sucralfate (0.77 (0.08) to 2.08 (0.17) μmol/h, n=6, p<0.05 with 10⁻⁵ M indomethacin).

The response to 3×10⁻³ M aluminium potassium sulphate was also not affected by 10⁻⁶ and 10⁻⁵ M indomethacin (gastric: 0.10 (0.01) to 0.48 (0.20) μmol/cm²/h, n=6, p<0.05: duodenal: 1.13 (0.03) to 1.76 (0.10) μmol/h, n=6, p<0.05: both series with 10⁻⁵ M indomethacin). At the high concentration of 10⁻⁴ M, indomethacin did abolish the alkali response to sucralfate by gastric and duodenal mucosa, but did not influence the aluminium responses. (Results not shown.)

Discussion

The results show that sucralfate and aluminium salts are capable of increasing alkali secretion from gastroduodenal mucosa by a prostaglandin independent mechanism. The secretory responses to sucralfate and aluminium were not associated with any alteration in transmucosal potential difference or electrical resistance (gastric mucosa only) implying that the transport of bicarbonate was neither electrogenic nor...
Stimulation of amphibian gastroduodenal bicarbonate secretion

significant quantities, however, it is unlikely that the protective effect of the drug in this tissue would be by the same mechanism.

There is evidence that sucralfate’s action on gastroduodenal defence may be mediated by increased production of locally formed protective prostanoids. Because exogenous prostanoids of the E₂ and F₂ series have been shown to stimulate gastroduodenal bicarbonate secretion and suppression of endogenous prostanoid synthesis leads to its inhibition, it seemed possible that the action of sucralfate (and aluminium) could be mediated by enhanced prostanoid formation. A number of early observations were not compatible with this hypothesis, however. First, stimulation of gastroduodenal bicarbonate secretion by exogenous prostanoids occurs by an electrogenic mechanism and is therefore accompanied by an increase in the transepithelial potential difference. Second, the potency of prostanoids on gastroduodenal mucosa is normally greater than on gastric mucosa, the magnitude of the secretory response to applied prostanoids being much greater. In the sucralfate experiments, the converse was observed with the gastroduodenal alkali response being smaller than the gastric. The indomethacin experiments provided further evidence that the secretory response to sucralfate was prostanoid independent. In concentrations believed to abolish cyclooxygenase activity (10⁻⁴ M), indomethacin failed to prevent the alkali response to sucralfate and aluminium by gastroduodenal mucosa. Therefore, although other protective mechanisms may be influenced by sucralfate’s or aluminium’s action on local prostanoid formation, there is no evidence that the bicarbonate response is dependent on such a mechanism. The same conclusion also seems to apply to stimulation of mucus production by sucralfate.

The action of sucralfate and aluminium on gastroduodenal alkali secretion would serve to enhance the protection afforded by the ‘mucus-bicarbonate’ barrier. Because sucralfate has been shown to influence other components of mucosal defence it seems likely that its protective action may be mediated by a number of different mechanisms. The relative importance of each defence mechanism activated and whether effects on certain zones would protect against a specific noxious agent are issues which remain unanswered. The finding that aluminium per se is a stimulant of gastroduodenal bicarbonate secretion is also of interest in that aluminium containing antacids have been shown to protect mucosa by effects independent of acid neutralisation and bile salt binding. It is therefore conceivable that enhancement of the ‘mucus-bicarbonate’ barrier plays a role in this protective action of aluminium containing antacids.

![Graph showing bicarbonate release](image)

Fig. 6 Effect of luminal aluminium (3 x 10⁻⁴ M) on alkalinisation by duodenal mucosa (n=6, mean (SE), *p<0.05).
Dr Crampton is in receipt of a North West Regional Health Authority Grant. The authors wish to thank the Department of Medical Illustration at Hope Hospital who prepared the figures and Mrs S Mayall for secretarial assistance in the preparation of the manuscript.

References

Stimulation of amphibian gastroduodenal bicarbonate secretion by sucralfate and aluminium: role of local prostaglandin metabolism.

J R Crampton, L C Gibbons and W D Rees

Gut 1988 29: 903-908
doi: 10.1136/gut.29.7.903

Updated information and services can be found at:
http://gut.bmj.com/content/29/7/903

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/