Measurement of gastrointestinal pH profiles in normal ambulant human subjects

D F EVANS, G PYE, R BRAMLEY, A G CLARK, T J DYSON, AND J D HARDCASTLE

From University Hospital, Queen's Medical Centre, Nottingham

SUMMARY Gastrointestinal (GI) pH has been measured in 66 normal subjects using a pH sensitive radiotelemetry capsule passing freely through the gastrointestinal tract. Signals were recorded with a portable solid state receiver and recording system, enabling unconstrained measurements with normal ambulatory activities for up to 48 h during normal GI transit. Capsule position in the gut was monitored by surface location using a directional detector. Gastric pH was highly acidic (range 1.0–2.5) in all subjects. The mean pH in the proximal small intestine was 6.6 (0.5) for the first hour of intestinal recording. By comparison the mean pH in the terminal ileum was 7.5 (0.4) (p<0.001). In all subjects there was a sharp fall in pH to a mean of 6.4 (0.4) (p<0.001) as the capsule passed into the caecum. Values are means (SD). pH then rose progressively from the right to the left colon with a final mean value of 7.0 (0.7) (p<0.001).

In recent years there has been increasing interest in the pH of the contents of the gastrointestinal tract. Previous measurements using aspiration or discrete sampling from the stomach or the rectum are unsatisfactory because of the problems of pooled measurements and also of the relative inaccessibility of other parts of the gastrointestinal tract.

Previous workers have attempted to identify gastrointestinal pH profiles using a pH sensitive radiotelemetry capsule. Bown et al.12 used a pH telemetry capsule to plot pH profiles in the GI tract. At the time, however, capsules were relatively unreliable, suffering from severe drift problems and a short life span. Although this work is of interest as a guide line to the present study, the results must be viewed with some caution because of the doubt about the accuracy of the radiocapsules which were used.

With the advent of a new stable, reliable, pH sensitive capsule with a longer usable life it is now possible to monitor pH in the gastrointestinal tract with a greater degree of accuracy than was previously possible. Additionally, with the introduction of portable receiving apparatus it is also possible to measure GI pH whilst patients are carrying out normal daily activities, this being desirable to ensure that measurements are recorded under physiological conditions in ambulant subjects.

The aim of our present study was to investigate the range of GI pH profiles in a representative group of normal subjects in order to establish a base line for future reference.

Methods

SUBJECTS

A total of 72 subjects (51 men) median age 26 years, range 20–83 years, with no previous or current gastrointestinal disease were recruited for the study over an 18 month period. The project was approved by the Nottingham Medical School Ethical Committee and all subjects gave written, informed consent before the study.

Subjects were not restricted to any dietary control either before or during the study. This was intentional in order to establish a base line from a mixed group of normal individuals with a wide age range and a mixed European diet. All subjects were interviewed before the study and questioned regarding dietary habits. Any subject found to have unusual
Before swallowing, the RTC was calibrated in buffers pH 4 and pH 9.2 at 37°C. Transit of solids through the GI tract varies widely between individuals but in most cases the 48 hour recording time was sufficient to record pH from the stomach to the rectum. At the end of the study the RTC was collected in the faeces using a specially designed frame. The RTCs were cleaned and resterilised after performing a check for pH drift in the calibration buffers.

Data were replayed on a dedicated microprocessor controlled replay unit to give a hard copy of pH against time. The data were also transferred to an ICL2900 mainframe computer via a BBC B micro-computer and 13.3 cm floppy discs. Group analysis of the data could then be done automatically using standard programming packages.

The data transfer via a British Telecom land line was facilitated using Decce and Kermit software, enabling a continuous accurate flow of data to a large database without line errors. As each recording used approximately 70 kbytes of computer memory, mainframe storage was essential in order to compare data from a large group of subjects.

LOCALISATION OF RTC

The capsule was localised in the GI tract utilising two distinctive changes during transit.

First, in order to identify the transition of the capsule from the stomach to the small intestine the sharp rise in pH signified by the capsule leaving the highly acidic environment of the stomach into the relatively alkaline environment of the duodenum was used as a marker.

Second, in order to locate the transit of the RTC into the caecum and its subsequent passage distally, the following method was used.

The surface position of the RTC was located over the abdomen using a highly directional aerial probe connected to a portable radiotelemetry receiver tuned to the capsule frequency (Remote Control Systems, London). The position of the capsule was assessed to be where the maximum signal strength of transmission was received by the probe. This position was recorded on a body map divided into nine sections over the abdomen at two to four hourly intervals, by the subjects during the study period (Fig. 2). The position of the capsule on arrival in the caecum was always found to be in the right iliac fossa. The capsule then moved round the abdomen from the right to the left side during its passage through the colon.

This method has been validated by us using radio isotopically labelled capsules and a gamma scintigraphy technique. The GI tract was outlined in six volunteers with 100 ml water labelled with 10 MBq...
Surface map — Gastrointestinal pH studies

Name: J. Smith
Date: 21-7-86
Study No.: 045
Sex: M
Age: 27
Study group: Normal

Please record surface position every 2 hours during the daytime. You should record the date and time in the first two columns and the recorder reading in column 3 with the anatomical zone (see diagram) in the last column.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>pH Value</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-7-86</td>
<td>09.00</td>
<td>1.5</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>11.05</td>
<td>6.5</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>13.12</td>
<td>7.4</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>7.9</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>14.03</td>
<td>6.2</td>
<td>G</td>
</tr>
</tbody>
</table>

![Diagram showing anatomical zones](image)

Fig. 2 Body map used to aid localisation of the RTC as it passes through the GI tract.

SIGNAL LOSS

Periods of signal loss are not uncommon from radiocapsules because the rf emission from this type of transmitter is highly directional. Studies involving free transit through the GI tract are therefore more likely to incur greater signal loss than in studies using tethered capsules, which have been reported at 10% or less. Improvements in aerial design and electronic switching units have been incorporated into the solid state recorder and thus signal loss has been reduced to an acceptable level for GI transit studies. In these studies periods of signal loss of greater than 75% of the total recording were excluded from the analysis.

STUDY PROTOCOL

At 8.30 am on the morning of the study after an overnight fast subjects swallowed the RTC with a small quantity of water. The recording equipment was applied and the recordings started immediately. Subjects were required to remain in the laboratory until the RTC had left the stomach, this being indicated by a rapid rise in pH from approximately pH 1.5 to a pH sustained at greater than 5. After gastric transit subjects were allowed to eat and drink normally. Subjects were fasted before the study in order to prevent delay of transit of the capsule from the stomach as it is known that large particles are retained in the stomach when associated with a meal.

During its passage through the GI tract the RTC was localised using the method previously described. Subjects were required to do this at approximately two hourly intervals to give an accurate location of the capsule. Normal food and drink were allowed throughout the study and the subjects were permitted to leave the laboratory for the remainder of this period. At night subjects removed the recording equipment but continued to wear the aerial around the abdomen to facilitate continuous recording without interrupting sleep. At the end of the study period recordings were replayed on to the Oxford replay unit to give a hard copy of the results and also transferred to the mainframe computer as previously described.

ANALYSIS

pH was sampled at 12 second intervals for the total recording period of up to 48 hours during the passage of the RTC through the gastrointestinal tract. Thus a total of 14400 data points were possible from each subject. In order to analyse data from specific parts of the gut the real time clock incorporated in the recorder was utilised to define the time periods when the RTC was passing through these areas.

Six specific periods were assessed.

Technicium 99m and the RTC labelled with indium. pH and surface position were continuously monitored during the passage of the RTC through the small intestine. In all cases the RTC was seen to enter the caecum as outlined by the marker at the same time as localisation in the right iliac fossa. Characteristic pH changes were also noted and subsequently used in the identification of the important ileocaecal transition.
Evans, Pye, Bramley, Clark, Dyson, and Hardcastle

of skewness (g1<0.05 in all cases). The means were grouped, from all the subjects and compared statistically using the Student’s t test for unpaired data.

Results

All subjects completed the study without difficulty or complications and were not aware of the capsule within the GI tract. Four tests failed because of excessive pill drift >1.0 pH and two tests failed because of excessive signal loss leaving a total of 66 studies suitable for analysis.

Signal Loss

Small bowel signal loss accounted for the majority of the losses and was greater than 75% in 14 studies. These values were not included in the final analysis.

Median signal loss due to the movement of the capsule was 20.4% (range 6.9–64.1%). In these studies where multiple measurements were made in each bowel segment these signal losses were considered acceptable.

Pill Drift

A post calibration check for pill drift was only possible in 38 of the 72 studies carried out where the RTCs were retrieved at the end of the recording period. In the remaining studies the RTC remained in the colon or rectum beyond the 48 hour study period and a post calibration was not considered feasible when the capsules were finally retrieved.

After superficial cleaning in running water the RTCs were recalibrated in the two standard buffer solutions. The measured values after the tests can be seen in Table 1.

The RTC passed through the small bowel and entered the caecum in all 66 subjects but in 16 the capsule failed to reach the left side of the colon within the 48 hour recording period and so no left sided recordings were obtained for these subjects.

Figure 3 shows a typical pH profile of the GI tract in a normal subject. The transition from the acid to alkaline environment is clearly seen as the capsule passes from the stomach to the small intestine; another distinct change can be seen as the RTC moves from ileum to caecum.

Table 1 pH drift as measured by a post test calibration

<table>
<thead>
<tr>
<th>Initial buffer pH (n=38)</th>
<th>Median post calibration pH</th>
<th>Median drift in pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>4.00 (3.6–4.8)</td>
<td>0.2 (0–0.6)</td>
</tr>
<tr>
<td>9.2</td>
<td>9.40 (9.0–10.2)</td>
<td>0.3 (0–1.0)</td>
</tr>
</tbody>
</table>

1 Proximal small bowel
The first hour of recording after the RTC had left the acidic environment of the stomach.

2 Distal small bowel
The last hour of the recording before the RTC was assessed to be in the caecum. Ileocaecal transition was associated with a sharp fall in pH from a relatively high stable ileal level (Fig. 3), together with a simultaneous surface location over the right iliac fossa.

3 Mid small bowel
The time period between 1 and 2 above.

4 Right colon
The four hour period after transition of the RTC into the caecum.

5 Left colon
The four hour period immediately preceding passage of the RTC from the rectum, or the last four hours of the study period providing the RTC was located in the left iliac fossa.

6 Mid colon
The period between 4 and 5 above.

A Fortran 77 program has been developed to calculate the mean pH from the six epochs. The use of mean values was justified as there was a minimum of 300 data points for each epoch for each subject. A normal distribution was confirmed by an initial test.
Proximal small bowel

The RTC's passage from the stomach to the duodenum was associated with a rapid rise in pH to a near neutral level. The mean pH in the proximal small intestine for the first hour of transit was pH 6-6 (0.5) for the whole group (Table 2).

Distal small bowel

The RTC spent a variable period in the right iliac fossa before transit into the caecum, typically in zone H (Fig. 2). This period was always associated with a relatively high value and with little overall fluctuation from a stable level (Fig. 3). The mean pH in this area was pH 7-5 (0.5). This was significantly higher than the proximal small intestine (p<0.001) and was typical for all subjects studied (Table 2).

Mid small bowel

The period analysed for this segment was necessarily of variable duration as it was derived by subtraction of the start and end time of periods of 1 and 2 above. Thus the period of analysis for each individual varied by the total transit of the RTC through the whole small bowel (that is, small bowel transit—two hours). The mean pH in the mid small bowel was pH 7-4 (0.4). This was significantly higher than pH in the proximal small bowel (p<0.001) but was not different from the distal recording.

Right colon

pH in the right colon was measured as the mean of the first four hours of colonic recording defined by the criteria of surface mapping and pH profile. The pH in the right colon showed more coarse fluctuations with a significantly lower value than that measured in the ileum. The mean pH in the right colon was 6-4 (0.6) for the group, this was significantly lower than the distal small bowel (p<0.001) (Table 2).

Left colon

Left colonic pH was calculated from the 50 subjects where the RTC had migrated into the distal colon before the end of the recording. In 32 of the subjects the RTC was passed per rectum by the end of the recording period. In the remainder, the RTC was surface located in zone J (Fig. 2), this denoting sigmoid colon or rectal positioning. In both groups therefore pH could be calculated from the final four hours of the recording period.

The mean pH in the left colon was 7-0 (0.7) for the 50 subjects. This value was significantly higher than in the right colon (p<0.001) (Table 2).

Mid colon

Mid colonic pH, calculated as described had a mean value of 6-6 (0.8). This was significantly higher than the left colonic value (p<0.01), but similar to the pH in the right colon.

Transit time

The mean RTC transit through the small intestine was 5-7 hours (2-04) hours. This compares well with other methods of small bowel transit methods and confirms the validity of the ileo-caecal transition.

Whole gut transit of the RTC was calculated in the 32 subjects where the capsule was passed before the study end. The mean whole gut transit for the capsule was 23-3 hours (8-16).

Discussion

This study has evaluated a new method of measurement of pH in the gastrointestinal tract in ambulant subjects using an improved pH sensitive radio-telemetry capsule and portable receiving system. pH profiles were measured in a group of normal subjects in order to establish base lines for comparative studies. All studies were completed without difficulty, the majority being available for analysis. In some cases the pH pill was retained in the right colon until the end of the study period, thus demonstrating the wide variety of transit in normal, asymptomatic subjects. All capsules were eventually passed without complications.

The pH measured by the RTC is that of the intraluminal contents in direct contact with the electrode. It is not the mucosal pH which is being

![Table 2 Results and statistics of pH measurements in normal subjects](image-url)
measured but that of the luminal contents which is in
direct contact with the mucosa. In the fluid or
semifluid of the small bowel the pH profile will reflect
the homogeneity of the environment. This is similarly
the case even in the solid or semisolid of the distal
colon where there was considerable local variation in
measured pH. If the electrode were to become
embedded in solid matter in the distal colon then the
pH recording would become static which was a
phenomenon not seen in our studies.

Meldrum et al. carried out similar studies in only
two normal controls and seven patients with miscel-
naneous GI disorders. pH profiles were similar to
those found in our study although some of the
extreme values of their measurements were outside
those found by us. This may be due either to their
capsule instability or the population sampled.

A major problem in the methodology in this type
of study has been the difficulty of location of the RTC
in the bowel lumen, especially in the less well
definable loops of the small intestine. We found that
by classifying the gut into zones which were positively
identifiable and with the added evidence from surface
location and pH, measurements could be relied upon
as accurate.

The significance of gastrointestinal pH levels is as
yet not clear. Intraluminal contents of the GI tract
may well influence the development of diseases such
as inflammatory bowel diseases or tumour formation.
Thornton postulated that intraluminal colonic pH
might be important in the development of colonic
neoplasia. Epidemiological evidence and laboratory
studies suggest that degradation of metabolites of digestion may be carcinogenic. As these
reactions are enzymic and pH dependent then pH
in the colon may be an important factor in neoplastic
development.

Further evidence of the association between
cancer incidence and colonic effluent has come from
faecal pH measurements in low and high risk popula-
tions although faecal pH measurements may not be
the most accurate means of assessment of colon pH.
Furthermore the measurement of faecal pH gives no
information about pH in the right side of the colon.
As colorectal neoplasia is found in 90% of cases in the
distal left colon then differences from right to left
may be important. Obviously a free moving radiopill
would give this information and studies are under-
way to assess differences in right and left sided pH in
patients with colorectal neoplasia, different dietary
groups and low and high risk populations.

If GI pH be a dynamic measurement influenced by
diet and lifestyle then one might expect not only
differences between individual dietary groups but also
differences during dietary fibre manipulation.
Bown et al. investigated the effects of lactulose, an
undigestible disaccharide, on colon pH in volunteers.
They used an early version of the pH capsule similar
to Meldrum, but in non-ambulant subjects. The
results from their studies showed similar trends to our
own in control studies and a significant acidification
in the right colon between lactulose and controls, but
less so on the left side.

In a recent study in our department a similar
effect was demonstrated using Fybogel (Reckitt and
Colman), a colonic bulking agent. In this study,
evertheless, pH was altered significantly in both
proximal and distal colon. If, therefore, it is easily
possible to alter pH in the large bowel and bowel pH
is subsequently shown to be important as a protection
against neoplasia then it would be highly desirable to
know which substances are most efficient in altering
pH in the colon.

There is increasing interest in the development of
enteric coatings of drugs in order to deliver topically
acting substances to the distal gut to improve
efficiency and efficacy. Many of these coatings have a
pH dependent dissolution, thus it becomes important
to know not only the pH profile along the GI tract,
but also whether there are any differences in disease
states, such as inflammatory conditions, in order to
target the drugs correctly.

There is also some evidence to suggest that there
are substantial changes in GI pH associated with
malabsorption in cystic fibrosis. Such changes may
therefore exist in other chronic bowel disorders such
as ulcerative colitis and Crohn’s disease. These
questions as well as many others concerning the
influence of gut pH remain unanswered. The
methodology described in this paper may be helpful
in the search for such information.

References
1 Reynolds JR, Walt RP, Hardcastle JD, Clark AG,
Smart HL, Langman M. 24 hour intragastric pH:
Continuous monitoring or nasogastric aspiration?
Digestion 1986; 33: 219–44.
2 Pietrousti A, Caprilli R, Guilano M, Serrano S, Vita S.
Faecal pH in colorectal cancer. Ital J Gastroenterol
3 Bown BL, Gibson JA, Sladen GE, Hicks B, Dawson
AM. Effect of Lactulose and other laxatives on ileal
and colonic pH as measured by a radiotelemetry device. Gut
4 Meldrum SJ, Watson BW, Riddle HC, Brown RL,
Sladen GE. pH profile of the gut as measured by a
5 Colson RH, Watson BW. Improved techniques in the
construction of pH sensitive radiopills. In: Amlander
CJ, Macdonald DW, eds. A handbook of biotelemetry
and radiotracking. Oxford: Pergamon Press, 1979:
209–12.
Gastrointestinal pH in man

D F Evans, G Pye, R Bramley, A G Clark, T J Dyson and J D Hardcastle

Gut 1988 29: 1035-1041
doi: 10.1136/gut.29.8.1035

Updated information and services can be found at:
http://gut.bmj.com/content/29/8/1035

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/