Cholecystokinin release and biliopancreatic secretion in response to selective perfusion of the duodenal loop with aminoacids in man

J F COLOMBEL, A SUTTON, J A CHAYVIALLE, AND R MODIGLIANI

From the INSERM U 290, Hôpital Saint-Lazare, Paris, France and INSERM U 45, Hôpital Edouard-Herriot, Lyon, France

SUMMARY The aim of this study was to measure the role of the duodenal loop in biliopancreatic secretion in man by infusing various stimuli at the ampulla of Vater and collecting duodenal contents at the ligament of Treitz, above an occluding balloon. Perfusion at 10 ml/min of a first mixture of aminoacids – phenylalanine (47·2 mmol), methionine (38·2 mmol), tryptophan (11 mmol), valine (61·6 mmol) – increased cholecystokinin (CCK) plasma concentrations and duodenal bile salt output (p<0.005) as compared with a control electrolyte solution, but did not change pancreatic enzyme secretion significantly; duodenal infusion of another aminoacid mixture – arginine (32·4 mmol), histidine (14·1 mmol), leucine (36 mmol), isoleucine (21·5 mmol), lysine (31 mmol), threonine (23 mmol) – did not change CCK plasma concentrations, bile salt or pancreatic enzyme output. The respective role of duodenal distension and endogenous CCK was investigated by perfusing the first aminoacid solution and the control solution at 2, 5, and 10 ml/min. Changing the perfusion rate of control solution from 2 to 5 ml/min led to a significant increase (p<0.01) in pancreatic secretion with no further increase at 10 ml/min. Bile salt output was not influenced by the perfusion rate of control solution. During the perfusion of the aminoacid solution, despite a stepwise increase in CCK release, the only significant change in pancreatic secretion was an increase of lipase output (p<0.05) when the infusion rate was raised from 2 to 5 ml/min. Our results suggest that duodenal CCK release (1) depends on the nature of aminoacids (2) has a predominant role in the regulation of pancreatic secretion at low perfusion rate but is less effective when superimposed on a mechanical stimulus caused by duodenal distension (3) is a major stimulus for gall bladder contraction which is not influenced by duodenal distension.

Infusion of aminoacids (AA) intraduodenally stimulates pancreatic enzyme secretion and gall bladder contraction.1 2 These effects are mediated by hormonal (essentially cholecystokinin (CCK) release) and neural pathways.1 2 It is accepted that stimulation of pancreatic enzyme production depends on the length of small intestine exposed to nutrients1 but it has also been shown in man that, when a meal was infused into the stomach, the gastroduodenal segment was sufficient to elicit the entire postprandial enzyme output, with the more distal bowel not modifying this output in any way.1 The role of the duodenal loop itself in biliopancreatic secretion has never been directly assessed in man but it was reported in canine experiments that perfusing the proximal 10 cm of intestine with phenylalanine did not induce any pancreatic secretory response.1

The aim of this work was to evaluate the role of the duodenal loop, separated from the rest of the bowel by a balloon, in biliopancreatic secretion in man. Therefore we investigated (1) the effect of infusing into the duodenum two different mixtures of AA on CCK release and biliopancreatic secretion; (2) the respective role of duodenal distension and CCK in the control of biliopancreatic secretion by perfusing intraduodenally the AA mixture shown to release CCK and a control electrolyte solution at increasing infusion rates.

Address for correspondence: R Modigliani, Department of Gastroenterology, Hôpital Saint-Lazare, 75475 Paris Cedex 10, France.

Received for publication 8 April 1988.
CCK release and biliopancreatic secretion in response to selective perfusion of the duodenal loop

Table 1 Composition of test solutions

<table>
<thead>
<tr>
<th></th>
<th>Control mmol/l</th>
<th>AA1 solution mmol/l</th>
<th>AA2 solution mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>110</td>
<td>Phenylalanine 47.2</td>
<td>Arginine 32.4</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>35</td>
<td>Methionine 38.2</td>
<td>Histidine 14.1</td>
</tr>
<tr>
<td>KCl</td>
<td>5</td>
<td>Tryptophan 11</td>
<td>Leucine 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valine 61.6</td>
<td>Isoleucine 21.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lysine 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Threonine 23</td>
</tr>
</tbody>
</table>

Methods

Subjects

Studies were carried out on 15 normal volunteers aged 20-28 years, with no history of gastrointestinal disease. Informed consent was obtained from all subjects and the protocol was accepted by the local ethical committee.

Test solutions

The solutions used to perfuse the duodenum consisted of a physiological electrolyte control solution (C) and of two aminoacid solutions (AA1 and AA2) whose composition is given in Table 1. These solutions were chosen because it had been previously suggested that one of them (AA1) released CCK when perfused intraduodenally whereas the other one (AA2) did not. The aminoacid solutions were made isoosmolar by addition of NaCl. All solutions had an osmolality of 300 mosmol/kg, contained 14C-polyethylene glycol, molecular weight 3600 (14PEG 3600, 20 μCi) as a non-absorbable marker and 200 mg phenolsulphonephthalein (PSP) to check any leakage of the duodenal segment beyond the balloon into the jejunum. The solutions were warmed at 37°C and adjusted to pH 6.0 before infusion.

Perfusion technique and blood sampling

A four lumen duodenal tube (Fig. 1) was positioned as follows:

- **Gastric aspiration**
- **Occlusive sampling**
- **Duodenal perfusion or Aminoacids or Electrolyte solution**
- **Duodenal samples for measurements of - Lipase - Chymotrypsin - Bile Salts**
- **Jejunal sampling to check Luminal occlusion**

Fig. 1 Location of duodenal and gastric tubes.
fluoroscopically with a perfusion site at the ampulla of Vater and the collection port at the ligament of Treitz above an inflatable balloon. During all experimental periods the balloon was inflated through the third tube with 45–60 ml air until the subject became aware of its presence; its tightness was repeatedly checked by the failure to detect PSP in the jejunal aspirate collected beyond the balloon through the fourth tube. In previous validation studies we found that inflation of this balloon at the angle of Treitz did not cause any change in biliopancreatic secretion as measured during saline infusion at rates of 2 and 10 ml/min (Table 2). The duodenal segment was continuously aspirated from its sampling point by siphonage with intermittent manual syringe aspiration to ensure continuous flow. During the last 60 minutes of each test period four 15 minutes samples were collected for analysis of the duodenal aspirate.

Venous blood was first obtained at the beginning of the experiments before intestinal perfusion, then every 30 minutes during control periods and every 15 minutes during AA periods. Blood was drawn into ice chilled glass tubes containing aprotinin and heparin. It was immediately centrifuged (3000 g x 10 min) at 4°C and the plasma stored at −80°C.

STUDY PROTOCOL

Preliminary study (study 1)
The duodenal loop was perfused at 10 ml/min with solutions C, AA1 and AA2 in eight subjects. Each AA period (75 minutes) was preceded and followed by a C period (90 minutes); the order of perfusion of the two AA solutions was randomised. Steady state conditions (as assessed by C14-PEG 3600 concentrations) were achieved after 15 minutes in all subjects. Lipase, chymotrypsin, bile salts and C14-PEG 3600 concentrations were measured in duodenal aspirates. For each subject values obtained during the three C periods were averaged.

Main study (study 2)
In this study biliopancreatic secretion in response to selective duodenal perfusion with C and AA1 solutions at increasing rates (2 ml/min, 5 ml/min, 10 ml/min) was assessed in seven subjects over a two-day experiment. The duodenum was perfused with C solution during one day and AA1 solution during the other day in a randomised order. Each test day consisted of the following periods: 2 ml/min (120 min), 5 ml/min (90 min), and 10 ml/min (90 min). Within each of the various experimental periods the concentrations of PEG in the successive 15 minute samples showed little variation after an equilibration period of 30–45 minutes when the perfusion rate was 2 ml/min, 15–30 minutes at 5 ml/min, and 15 minutes at 10 ml/min. Lipase, chymotrypsin, bile salt and C14-PEG 3600 concentrations were assayed in all duodenal samples. A gastric sump tube was positioned in the antrum allowing continuous aspiration of gastric contents. The percentage of duodenal reflux into the

Fig. 2 Output of bile salts during the perfusion of control and aminoacid solution at 10 ml/min. Individual values and mean (SE) are shown. Significant stimulation was seen with AA1 solution only (p<0.005).
stomach, as assessed by recovery of C14-PEG in gastric contents, was determined for each period.

CHEMICAL ANALYSIS AND C14-PEG COUNTING

C14-PEG was measured in duodenal and gastric samples by 6 scintillation. Lipase, chymotrypsin and bile salts were assayed in all duodenal samples kept in ice using standard methods.17

RADIOIMMUNOASSAYS

Cholecystokinin like immunoreactivity was measured on coded samples with antiserum 67 H, raised in a New Zealand white rabbit injected with purified porcine CCK-33 (V Mutt) conjugated to bovine albumin through ethyl carbodiimide condensation. The antiserum bound with equal potencies all C-terminal sulphated sequences of nine or more residues (CCK-33-39, CCK-10, Threonine 28-Norleucine 31 CCK-nonapeptide, CCK-8), with a maximum affinity constant of 6-24×10 \(^{-11}\) mol/l. The cross reactivity was 30% for sulphated CCK-8, 2% for sulphated Gastrin-17, and less than 1% for non sulphated Gastrin-17 and CCK-8. The C-terminal decapeptide CCK-24-33 (gift from E Wünsch) was labelled with the Bolton and Hunter reagent according to Fourmy et al.7 Purified porcine CCK-33 was used as standard. The CCK-related components present in human plasma, in basal conditions and under intraduodenal infusion of triglycerides,9 were characterised after extraction of pooled plasma on octadecasilylsilica cartridges (Sep Pak – Waters). Three molecular forms were detected, respectively eluted in the volume of CCK-33-39, intermediate to CCK-33 and CCK-8, and in the volume of CCK-8. The ID 50 in presence of 20% charcoal treated human plasma was about 5 fmol per tube for a maximal specific binding of 27–35%. Results were expressed as pmoles per litre of plasma.

CALCULATION AND EXPRESSION OF RESULTS

Outputs of enzymes and bile salts were calculated by multiplying their concentrations in each sample by the corresponding flow rates measured at the angle of Treitz. Flow rates at the angle of Treitz were derived from C14-PEG concentrations in test solutions and duodenal aspirates using standard formulae.11

For each subject values of the four samples obtained during the various experimental periods were averaged. Results are expressed as mean (SE). Control values in study 1 were obtained by averaging the results of the three C periods. Statistical analysis was carried out by the Student’s t test for paired data.

Results

No leakage of duodenal contents beyond the inflated

![Fig. 3](http://gut.bmj.com/) **CCK plasma concentrations during the perfusion of control and aminoacid solutions at 10 ml/min. Individual values and mean (SE) are shown. Significant increase was seen with AA1 solution only (p<0.005).**
lipase

Fig. 4 Output of pancreatic enzymes during duodenal infusion of control solution at increasing perfusion rates. Individual values and mean (SE) are shown. Changing the duodenal perfusion rate from 2 to 5 ml/min led to a significant increase in lipase and chymotrypsin (p<0.01) outputs. No further significant increase was seen at 10 ml/min.

balloon occurred as shown by the absence of PSP in the jejunal samples.

STUDY 1
Selective duodenal infusion (10 ml/min) of AA1 induced a frank increase in bile salt output (Fig. 2) but a small and non-significant augmentation of lipase and chymotrypsin secretion: 2.12 (0.44) kU/min v 1.53 (0.6) and 141 (35) U/min v 119 (18) respectively. There was concomitantly a sharp increase in plasma CCK concentrations (Fig. 3). By contrast duodenal infusion of AA2 did not change bile salt output (Fig. 2), lipase and chymotrypsin secretion (1.32 (0.6) kU/min v 1.53 (0.6) and 104 (20) U/min v 119 (18) respectively) or plasma CCK concentrations (Fig. 3).

STUDY 2
Effect of increasing duodenal perfusion rates on biliopancreatic secretion and plasma CCK concentrations.
Control electrolyte solution: as shown on Figure 4, changing the duodenal perfusion rate from 2 to 5 ml/min led to a parallel and significant increase in lipase and chymotrypsin outputs. When the perfusion rate was switched to 10 ml/min there was a trend for a further increase in enzyme outputs but this was not statistically significant. Bile salt outputs were somewhat erratic and did not undergo significant changes on increasing duodenal perfusion rates (Table 3). Likewise there was no significant influence of duodenal perfusion rates on CCK plasma levels (Table 3). Gastric reflux occurred only at a perfusion rate of 10 ml/min and averaged 8±2%.

AA1 solution: as shown on Figure 5 changing the duodenal perfusion rate from 2 to 5 ml/min caused a significant increase in lipase output but no significant change in chymotrypsin secretion. When the perfusion rate was switched to 10 ml/min there was no significant further increase in pancreatic enzyme outputs. Bile salt outputs were respectively (μmol/min) 17.9 (3.5), 18.9 (5.3), and 8.7 (3.9) at infusion rates of 2, 5, and 10 ml/min. The lower value observed at 10 ml/min was likely to be caused by the rupture of the enterohepatic cycle caused by the initial part of the protocol. Finally CCK plasma concentrations increased significantly in parallel to the infusion rates (Fig. 6). As in control periods gastric reflux occurred only at a perfusion rate of 10 ml/min and averaged 7 (3)%.

Comparative effects of electrolyte and AA1 solution on biliopancreatic secretion and CCK plasma concentrations.
At any given infusion rate, the pancreatic enzyme outputs measured during duodenal infusion of AA1 tended to be superior to that obtained during infusion
CCK release and biliopancreatic secretion in response to selective perfusion of the duodenal loop

of C. For chymotrypsin this difference was significant at infusion rates of 2, 5, and 10 ml/min with a 4·34, 1·98, and 1·75 fold increase respectively (Fig. 7). For lipase the difference between AA1 and C solution was only significant at 2 ml/min representing a 2·38 fold increase of secretion (Fig. 7). Bile salt outputs were much higher with AA1 (given in the previous paragraph) than with C solution (Table 3) at infusion rates of 2 ml/min (15 fold increase) and 5 ml/min (4·3 fold increase) but the difference was smaller at 10 ml/min merely reflecting a previous depletion of the bile salt pool. Finally plasma CCK concentrations were significantly higher during AA1 (Fig. 6) than during C (Table 2) infusion at any rate; the difference increased in parallel with the infusion rate with a 1·27 (p<0·025), 2·4 (p<0·025), and 3·14 (p<0·0005) fold increase at 2, 5, and 10 ml/min respectively.

Discussion

The pancreatic response to a meal can be divided into three phases: cephalic, gastric, and intestinal and results from a complex interplay of both hormonal and neural pathways. There is much evidence to suggest that the duodenal loop itself is prevalent in the control of the intestinal phase although its specific role has never been assessed in man.

We measured biliopancreatic secretion in response to stimulation of the duodenal loop, using an occlusive balloon at the ligament of Treitz, and in the absence of significant duodenogastric reflux. Our results clearly showed that the stimulation of a 25 cm segment below the papilla is able to release CCK in response to chemical stimuli and to induce biliopancreatic secretion in response to mechanical or chemical stimuli. Although the jejunoileal segment possesses mechanisms able to influence pancreatic exocrine function, Miller et al showed that the control of human postprandial pancreatic secretion is a function of the gastroduodenal region. Because the best understood role for the stomach in regulating pancreatic secretion is as a determinant of the rate of gastric emptying of chyme into the intestine, this study suggests that the duodenal loop could play a major role within the gastroduodenal segment.

Although CCK has been recognised to play a predominant role in the intestinal phase of pancreatic secretion, recent observations emphasise the import-
ance of neural pathways in pancreatic secretory response to food.12-14 In man, the major argument favouring a CCK independent control mechanism of pancreatic enzyme secretion has been the stimulation of enzyme production in response to increasing duodenal perfusion rate of saline solution15,16 and to instillation of hyperosmotic solution.16 This suggests the existence of volume and osmoreceptors mediating pancreatic exocrine secretion somewhere in the small intestine as in these experiments the duodenal loop was not isolated and the saline solution not interrupted at the angle of Treitz. In our work while a balloon was inflated at the angle of Treitz, we also observed a frank increase of pancreatic enzyme output on switching the infusion rate of the saline solution from 2 to 5 ml/min. As the order of magnitude of this change was similar to those observed when the whole intestine was perfused,15,16 it is likely that volume receptors are mainly located in the duodenum. A further increase of the perfusion rate (from 5 to 10 ml/min) induced a minor and non significant increment of enzyme production suggest-

Table 3 Effect of duodenal infusion of control solution at increasing perfusion rates on bile salt output and CCK plasma levels (mean (SE))

<table>
<thead>
<tr>
<th></th>
<th>2 ml/min</th>
<th>5 ml/min</th>
<th>10 ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile salts ((\mu\text{mol/min}))</td>
<td>1.2 (0.6)</td>
<td>4.4 (1.8)</td>
<td>3.9 (2.2)</td>
</tr>
<tr>
<td>CCK (pmol/l)</td>
<td>7.3 (0.9)</td>
<td>8.1 (1.1)</td>
<td>8.5 (1.6)</td>
</tr>
</tbody>
</table>

Differences between the values for different perfusion rates were not statistically significant.
CCK release and biliopancreatic secretion in response to selective perfusion of the duodenal loop

115

ing that volume receptors are saturable. It should be
noticed that 10 ml/min is superior to the duodenal
output observed in the postprandial phase. The
volume dependent control of pancreatic secretion is
probably mediated by neural cholinergic pathways
because (1) we observed no change in CCK concen-
trations when the perfusion rate of the saline solution
was increased and (2) in other studies atropine
markedly suppressed the pancreatic response to
intestinal tract distension.15-16

Increasing the infusion rate of AA1 solution
caued a stepwise increase of CCK release but
affected much less enzyme outputs, the only signif-
icate change being an increase of lipase output when
the infusion rate was raised from 2 to 5 ml/min.
Although pancreatic secretion and changes in plasma
CCK concentrations have been correlated in man
after intravenous administration of CCK, the data
concerning the endogenous release of CCK are
scarce. A few studies demonstrated a significant
relation between CCK release and pancreatic
secretion but at variance with our protocol the
nutrients were infused in the jejunum.17-19

Our results give further insights into the interplay
between the mechanical and chemical stimuli of
pancreatic enzyme response: at low perfusion rates (2
ml/min) the superimposition of the chemical (AA) to
the mechanical (distension) stimulus strongly stimu-
lated the secretion of both pancreatic enzymes and
bile salts. At higher infusion rates (5 and 10 ml/min)
the effect of replacement of the electrolytes by the
AA1 solution on enzyme secretion was blunted
especially at steady increments of CCK plasma concen-
trations. At the rate of 2 ml/min the response to saline
infusion represented respectively 42 and 23% of the
secretion of lipase and chymotrypsin triggered by
AA1 infusion. The corresponding figures were of
69% and 51% at 5 ml/min and of 68% and 57% at 10
ml/min. This suggests that CCK is less effective
for stimulating enzyme production when superimposed
on a mechanical stimulus.

The AA1 solution strongly stimulated bile salt
duodenal output in both the preliminary study
(infusion rate: 10 ml/min) and the main study, at
infusion rates of 2 and 5 ml/min. In the latter study,
bile salt output diminished during the last experi-
mental period (infusion of AA1 solution at 10
ml/min). This may have been due to the interruption
of the enterohepatic cycle caused by total aspiration
do duodenal contents at the angle of Treitz during the
preceding 210 minutes. The aminoacid induced gall
bladder contraction was most probably mediated by
CCK. Interestingly enough, increasing perfusion
rates of the saline solution did not influence bile salt
output, suggesting that gall bladder contraction is not
triggered by duodenal volume receptors, although
other neural pathways might be involved in gall
bladder stimulation.20

Finally we confirmed that CCK release by the
duodenum was dependent upon the nature of the AA
infused: in contrast to AA1 mixture the AA2
solution did not change at all CCK concentrations
and bile salt secretion. The nature of the mucosal
receptor' triggering duodenal CCK release remains
unknown. Any future hypothesis about its physi-
ology should account for its apparent dependence
upon the nature of the AA.

The authors thank Mrs M Rongier, M Maurel, M
Bovet, C Franchisseur, and C Bernard for technical
assistance and C Debuchy for typing the manuscript.

References
1 Solomon TE. Regulation of pancreatic secretion. Clin
2 Singer MV. Réponse sécrétory pancréatique aux stimu-
liants intestinaux. Gastroenterol Clin Biol 1986; 10:
504-12.
3 Meyer JH, Kelly GA, Spingola LJ, Jones RS. Canine
gut receptors mediating pancreatic responses to luminal
4 Miller LJ, Clain JE, Malagelada JR, Go VLW. Control of
human postprandial pancreatic exocrine secretion. A
function of the gastroduodenal region. Dig Dis Sci 1979;
24: 150-4.
5 Thomas FB, Sinar D, Mazaferri EL, et al. Selective
release of gastric inhibitory polypeptide by intra-
duodenal amino acid perfusion in man. Gastro-
6 Marchis-Mouren G, Sarda L, Desnuelle P. Purification of
hog pancreatic lipase. Arch Biochem Biophys 1959;
7 Figarella C, Taulier J, Sarles H. Dosage de la chymo-
trypsine et de la trypsine dans le suc duodénal. Bull
8 Murphy GM, Billing BH, Baron DN. A fluorometric and
enzymatic method for the evaluation of serum total bile
9 Fourmy D, Pradayrol L, Antoniotti H, Esteve JP, Ribet
A. Purification of radio-iodinated cholecytokinin pep-
tides by reverse phase HPLC. J Liq Chromat 1982;
5: 757-66.
10 Guedon C, Ducrotte P, Chayvialle JA, Lerebours E,
Denis P, Colin R. Effects of intravenous and intra-
duodenal fat on jejunal motility and on plasma chole-
11 Modigliani R, Bernier JJ. Effects of glucose on net and
unidirectional movements of water and electrolytes in
the human small intestine. Biol Gastroenterol 1973; 5:
165-74.
12 Singer MV, Solomon TE, Grossman MI. Effect of
atropine on secretion from the intact and transplanted
13 Solomon TE, Grossman MI. Effect of atropine and
vagotomy on response of transplanted pancreas. Am J
Physiol 1979; 236: E186-90.
Cholecystokinin release and biliopancreatic secretion in response to selective perfusion of the duodenal loop with aminoacids in man.

J F Colombel, A Sutton, J A Chayvialle and R Modigliani

Gut 1988 29: 1158-1166
doi: 10.1136/gut.29.9.1158