whole body insulin-mediated glucose uptake, evaluated by the euglycaemic clamp technique, tends to be lower in non-insulin dependent diabetic patients with gall stone disease than in diabetic patients without gall stone disease. Therefore, the risk of cholelithiasis could be in part due to defects in glucose metabolism. A high insulin concentration has been shown to be a good marker of insulin resistance, and we have shown the association between insulin resistance and lipid and lipoprotein abnormalities in patients with non-insulin dependent diabetes. Therefore, the correlation of a high insulin concentration with lipid and lipoprotein abnormalities which we found in patients with gall stone disease is expected.

In any case, the possibility that a high insulin concentration is only a marker of impaired insulin-mediated glucose uptake in diabetic patients with gall stone disease is a novel finding which deserves further study. The relation of insulin resistance and gall stone disease is, however, of biological importance only if this association can be shown in non-diabetic subjects.

MICHELE CASELLI
EUGENIO MORSIANI
ARRIGO ALEGTH
VITTORIO ALVISI
Department of Medicine,
Department of Surgery,
and Centre of Electron Microscopy,
University of Ferrara,
44100 Ferrara, Italy

Correspondence to: Dr Michele Caselli, C. b. Rossetti, 34, I-44100 Ferrara, Italy.

Gall bladder epithelium and cholesterol gall stones

Sir,-The ultrastructural findings by Sahlin and colleagues do not show any statistically significant increase in mucous secretory granules of the gall bladder epithelial cells in patients with cholesterol gall stones compared with control patients without gall stones but with polyps. Polyps of the gall bladder may be involved in the natural history of the gall stone disease, and fragments of gall bladder mucosa taken from such patients do not seem to us appropriate control tissues. Sahlin et al., furthermore, do not say where 'a strip of the gall bladder wall was excised' and how many specimens were examined in each patient.

We investigated ultrastructural morphology of gall bladder mucosa in 15 patients with cholesterol gall stones (data submitted for publication). Fragments of tissue were taken from the fundus, body, and neck. Ten minute specimens of about 1 mm in diameter were obtained from each fragment. Transmission electron microscopy, using a specific method to stain glycoprotein and mucoproteins (Thiery's method), showed at least one area of 'mucous metaplasia' (Fig 1) (similar to that which other workers have called gastric metaplasia) in at least one specimen from each patient. A layer of visible mucus was observed suspended only above the metaplastic areas (Fig 2), and intercellular spaces appeared much tighter in fully metaplastic epithelium than in the ordinary one, further indicating a progressive tendency to assume a secretory function. We suggested that the increase of mucous glycoproteins may be a zonal event: fully metaplastic zones may functionally represent 'nucleating areas' and the areas of gall bladder lumen near 'mucous metaplasia' might be the ones in which the onset of nucleation occurs.

MICHELE CASELLI
EUGENIO MORSIANI
ARRIGO ALEGTH
VITTORIO ALVISI
Department of Medicine,
Department of Surgery,
and Centre of Electron Microscopy,
University of Ferrara,
44100 Ferrara, Italy

Correspondence to: Dr Michele Caselli, C. b. Rossetti, 34, I-44100 Ferrara, Italy.

Figure 2: Ultrathin section stained with Thiery's method. A mucous layer is suspended above metaplastic cells. Original magnification × 45000.

Immunological response to Cryptosporidium species

SIR,—The case report by Jacyna et al describing a patient with colonic Cryptosporidium infection and IgA deficiency, is informative. Specifically, this report provides evidence that intestinal IgA antibody is important for protection against Cryptosporidium infection.

One comment by the authors—namely, that cell mediated immunity is the primary mechanism of host defence against cryptosporidiosis, is not well supported by currently available evidence. Clearance of an infection by cell mediated immunity means that effector cells such as macrophages or cytotoxic lymphocytes kill the pathogen. In vitro, recent studies with Cryptosporidium-infected mice indicate that clearance of the parasite is not inhibited by selective depletion of cytotoxic (CD8+) T lymphocytes. This observation argues strongly against a role for T cell mediated cytotoxicity in protection against Cryptosporidium infection, at least in mice. By contrast, selective depletion of helper (CD4+) T lymphocytes prolongs murine cryptosporidiosis. It can, therefore, be concluded that protective immunity against Cryptosporidium infection in mice is dependent on helper T lymphocytes, but this conclusion does not necessarily imply that the immunity is cell mediated.

Although it is unclear how CD4+ T lymphocytes confer protection against Cryptosporidium infection, a testable possibility is that they do so by triggering a Cryptosporidium-specific antibody response in the intestine.

What is the evidence that antibody protects against Cryptosporidium infection? Besides the report by Jacyna et al., several recent studies support the idea that protection against Cryptosporidium requires the presence of a specific immunity, possibly, enteral administration of bovine colostrum containing Cryptosporidium-specific antibodies can diminish the intensity of Cryptosporidium infection in human subjects and in calves.9 In Crypto- sporidium, the infectivity of sporozoites for mice can be reduced or eliminated by incubating the sporozoites with antibodies that bind to their surfaces. This particular finding raises the possibility that Cryptosporidium has a mechanism that acts mainly, or exclusively, against Cryptosporidium lifecycle stages that occur extra-cellularly, in the intestinal lumen (sporozoites and merozoites). Unlike these extracellular stages, Cryptosporidium trophozoites are attached to intestinal epithelial cells, and are covered on their luminal aspect by an envelope of host cell origin. Conceivably, this envelope may prevent luminal antibody from binding to Cryptosporidium trophozoites in vivo.

The lifecycles of Cryptosporidium and Giardia species have little in common with each other. None the less, evidence accumulated over recent years suggests that antibody plays a major part in the development of protective immunity against both these genera of intestinal parasite.10

MICHELE CASELLI
EUGENIO MORSIANI
ARRIGO ALEGTH
VITTORIO ALVISI
Department of Medicine,
Department of Surgery,
and Centre of Electron Microscopy,
University of Ferrara,
44100 Ferrara, Italy

Correspondence to: Dr Michele Caselli, C. b. Rossetti, 34, I-44100 Ferrara, Italy.

Figure 1: Ultrathin section stained with Thiery's method. An area of 'mucous metaplasia'. Many mucous secretory granules are recognizable in the apical part of the cells. Original magnification × 7000.

Figure 2: Ultrathin section stained with Thiery's method. A mucous layer is suspended above metaplastic cells. Original magnification × 45000.

Immunological response to Cryptosporidium species

SIR,—The case report by Jacyna et al describing a patient with colonic Cryptosporidium infection and IgA deficiency, is informative. Specifically, this report provides evidence that intestinal IgA antibody is important for protection against Cryptosporidium infection.

One comment by the authors—namely, that cell mediated immunity is the primary mechanism of host defence against cryptosporidiosis, is not well supported by currently available evidence. Clearance of an infection by cell mediated immunity means that effector cells such as macrophages or cytotoxic lymphocytes kill the pathogen. In vitro, recent studies with Cryptosporidium-infected mice indicate that clearance of the parasite is not inhibited by selective depletion of cytotoxic (CD8+) T lymphocytes. This observation argues strongly against a role for T cell mediated cytotoxicity in protection against Cryptosporidium infection, at least in mice. By contrast, selective depletion of helper (CD4+) T lymphocytes prolongs murine cryptosporidiosis. It can, therefore, be concluded that protective immunity against Cryptosporidium infection in mice is dependent on helper T lymphocytes, but this conclusion does not necessarily imply that the immunity is cell mediated.

Although it is unclear how CD4+ T lymphocytes confer protection against Cryptosporidium infection, a testable possibility is that they do so by triggering a Cryptosporidium-specific antibody response in the intestine.

What is the evidence that antibody protects against Cryptosporidium infection? Besides the report by Jacyna et al., several recent studies support the idea that protection against Cryptosporidium requires the presence of a specific immunity, possibly, enteral administration of bovine colostrum containing Cryptosporidium-specific antibodies can diminish the intensity of Cryptosporidium infection in human subjects and in calves.9 In Crypto- sporidium, the infectivity of sporozoites for mice can be reduced or eliminated by incubating the sporozoites with antibodies that bind to their surfaces. This particular finding raises the possibility that Cryptosporidium has a mechanism that acts mainly, or exclusively, against Cryptosporidium lifecycle stages that occur extra-cellularly, in the intestinal lumen (sporozoites and merozoites). Unlike these extracellular stages, Cryptosporidium trophozoites are attached to intestinal epithelial cells, and are covered on their luminal aspect by an envelope of host cell origin. Conceivably, this envelope may prevent luminal antibody from binding to Cryptosporidium trophozoites in vivo.

The lifecycles of Cryptosporidium and Giardia species have little in common with each other. None the less, evidence accumulated over recent years suggests that antibody plays a major part in the development of protective immunity against both these genera of intestinal parasite.10

M F HEWORTH
AIDS Research Center and Cell Biology Section, VA Medical Center, San Francisco, California 94121; and University of California, San Francisco, USA

3 Heworth MF. Intestinal IgA responses to Giardia mans in mice depleted of helper
Gall bladder epithelium and cholesterol gall stones.

M E Caselli, E Morsiani, A Aleotti and V Alvisi

Gut 1990 31: 1423
doi: 10.1136/gut.31.12.1423

Updated information and services can be found at:
http://gut.bmj.com/content/31/12/1423.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/