Olsner’s disease is not a telangiectasia but a tumour

Str.—I have read with great interest the instructive article by Zentler-Munro et al about an association of vascular abnormalities and hepatic fibrosis in Olsner’s disease. Above all, I was impressed by their photographs. In Figure 3, there are dilated vascular spaces practically devoid of erythrocytes and still other ones full of red blood cells. I covered the latter by white stain and looked with astonishment how few hepatocytes remained from original hepatic tissue. To all appearances, a tissue of hepatic lobules was almost destroyed by vessels surrounded by characteristic of which reminds of tumoral growth instead of telangiectases.

As we believe that hyperplastic capillaries are involved in a pathogenesis of fibrosis, I looked for them in the article of Zentler-Munro et al. Having been unable to identify them, I turned to other articles concerning Olsner’s disease. I found them in an article by Tedesco et al who had described an angiomata in the submucosa of a stomach and telangiectases associated with fibrosis in the liver.

Further, I was attracted by an article by Nödl who had studied cutaneous telangiectases. His outstanding photographs of pathologic vessels surrounded by mononucleated poietic mesenchymal cells (Figs 2, 3, 4, 5, 6, 7, 8) reminded me immediately of similar vessels that I had observed when I studied cutaneous vascular tumours. At that time, I described hyperplastic capillaries composed of endothelial undifferentiated endothelial cells and situated in the vicinity of a capillary haemangioma, a haemangiopericytoma, and an angioleio-myoma. The capillaries were so similar to sweat glands that a careful morphological analysis was needed in order to distinguish these two structures. These hyperplastic capillaries could give rise: (a) to long narrow strips of smooth muscle tissue by an in situ differentiation of their cells into smooth muscle cells; (b) to pathological muscular vessels by a short distance centrifugal migration and a differentiation of their cells into vascular wall muscular cells; and (c) to ectatic capillaries surrounded by fibroblast-like cells by a migration of their cells into the extracellular space and their differentiation there.

A similarity between the vessels described by Nödl and the vessels I have observed suggests that Nödl described in reality tumoral lesions. I looked, therefore, for hyperplastic capillaries in his article. I found them in Figs 3, 4, 6c, 6d, 7, 8. Nödl does not mention them because he considers them to be sweat glands. I believe that at least some of these structures are hyperplastic capillaries: (1) a number, a location, and a morphology of pathological muscular vessels indicate that they are not formed by remodelling pre-existing normal vessels; (2) that they are collapsed and undergoing involution suggesting their high turnover; (3) there are structures clearly recognisable as mesenchymal but similar to sweat gland tubules (Figs 3, 4, 6d — in the middle, 7 — large tubule on the right side, 8 — on the right side); (4) referring to my previous observation, endothelial cells in the ‘sweat glands’ often degenerate, most probably because of hypoxia, and their nuclei form clusters leaving empty space in their vicinity (Fig 7 — in the upper right corner); (5) endothelial cell nuclei often possess an elongated form. When they are oriented longitudinally hyperplastic capillaries manifest histopathological patterns incompatible with genuine sweat glands (Fig 7 — in the upper right corner). Finally, there is a remnant of an original hyperplastic capillary composed of several layers of undifferentiated epitheloid endothelial cells (Figs 9, 10). Because there is no other pathological process present, the remnant is not a reactive hyperplasia but a manifestation of tumoral growth.

If Olsner’s disease is a vascular tumour antiangiogenesis¹¹ may be tried in its therapy. This proposition is supported by a successful treatment of this disease by methoxyprogerone acetate administration.¹²

There are several other diseases which present themselves as telangiectases but derive from hyperplastic tumoral capillaries. They are the senile haemangioma, Cutis marmorata telangiectasia congenita (Osler–Ford),¹³ and the generalised essential telangiectasia (unpublished personal observation).

Ranitidine noce (Rh) r vanditane mane and noce (Rhbid)

Str.—We wish to comment on the abstract by Dobrilla et al (Gut 1989; 30: A726) stating that there is no significant difference between Rh and Rhbid healing rate at two weeks but the authors did not mention which statistical test and significance level they used.

We found, however, using the χ² test, without Yates correction, a significant difference between the two treatments at two weeks (p = 0.002) which is significant in terms of width level. It would be interesting to know why according to the authors the difference in healing rate was not significant at two weeks.

Oesophageal carcinoma in Sri Lanka

Str.—With reference to the article by Sagar (Gut 1989; 30: 561–4), I wish to add that Sri Lanka was a transit point in the old silk route between China and Rome. Marco Polo also stopped over in Sri Lanka (then identified by him as Selan) on his return from China.¹⁴ On the diet of the natives of the northern region of Ceylon, seven centuries ago, Marco Polo wrote, ‘They have no grain other than rice. They have sesame, from which they make oil. They live on milk, flesh and rice and have wine made from trees’.

The wine he referred to, is known as ‘kallu’ in Tamil language, and is produced from the palmyra palm Berassus flabellifer.

Stephen and Uragoda¹⁵ have reported that cancer of the oesophagus is the commonest among the patients admitted to thoracic units in Ceylon, and Ceylon is one of the few countries with a high incidence of both oral and oesophageal carcinoma. In China,¹⁶ the male-female ratio of patients with oesophageal cancer is reported as 2:1. But in Sri Lanka, the incidence of oesophageal carcinoma is higher among women than men.¹⁷

1 S KANTHA

Oesophageal carcinoma in Sri Lanka

Str.—With reference to the article by Sagar (Gut 1989; 30: 561–4), I wish to add that Sri Lanka was a transit point in the old silk route between China and Rome. Marco Polo also stopped over in Sri Lanka (then identified by him as Selan) on his return from China.¹⁴ On the diet of the natives of the northern region of Ceylon, seven centuries ago, Marco Polo wrote, ‘They have no grain other than rice. They have sesame, from which they make oil. They live on milk, flesh and rice and have wine made from trees’.

The wine he referred to, is known as ‘kallu’ in Tamil language, and is produced from the palmyra palm Berassus flabellifer.

Stephen and Uragoda¹⁵ have reported that cancer of the oesophagus is the commonest among the patients admitted to thoracic units in Ceylon, and Ceylon is one of the few countries with a high incidence of both oral and oesophageal carcinoma. In China,¹⁶ the male-female ratio of patients with oesophageal cancer is reported as 2:1. But in Sri Lanka, the incidence of oesophageal carcinoma is higher among women than men.¹⁷

1 S KANTHA

Reply

G Dobrilla

Gut 1990 31: 242
doi: 10.1136/gut.31.2.242-c

Updated information and services can be found at:
http://gut.bmj.com/content/31/2/242.4.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/