tion with H pylori (69/70 = 99%) compared with the smaller risk (RR = 8) with antral infection with H pylori (85/96 = 89%).

In our series the frequency of duodenal ulcer in patients with H pylori in their duodenum was double the frequency of ulcers in the duodenums of patients with H pylori in their antra, which is why we suggested that duodenal ulcers with pylori may be more closely related with duodenal ulceration than antral ulceration.

J H BARON ON KARIM M WALKER St Charles Hospital, London W10 1DN

Letters

Influence of treatment with pancreatic extracts on pancreatic enzyme secretion

Str,—The article by Mossmore and colleagues (Gut 1989; 30: 1143–9) is a carefully conducted attempt to study the possible negative feedback regulation of pancreatic enzyme secretion. The authors point out a possible flaw in their design, in that they perfused the jejunal with enzymes, rather than the duodenum. Nevertheless they failed to show any negative feedback of pancreatic enzyme secretion. In fact their results are consistent with stimulation of CCK release from the jejunum by the protein load, with consequent increased pancreatic enzyme secretion. Similar results were obtained by two groups independently1 in studies in the dog. Duodenal perfusion with pancreatic juice in the basal state stimulated rather than inhibited pancreatic enzyme secretion.

Mossmore and colleagues cite the evidence for negative feedback inhibition of pancreatic enzyme secretion in the rat, pig, and chicken. Their study emphasises once again the difficulties of extrapolating from man into results obtained in other species. Recommendations for expensive treatment with pancreatic extracts that are based on such experimental studies must be viewed with caution. If a clinical benefit for these treatments is demonstrated, this study suggests that a mechanism other than negative feedback inhibition might be involved.

C D JOHNSON Department of Surgery, Southampton General Hospital, Tremona Road, Southampton


Helicobacter pylori infection in Meckel’s diverticulum

Str.—We were interested to read that Dr Morris and colleagues found Helicobacter pylori colonisation of gastric mucosa in a resected Meckel’s diverticulum (Gut 1989; 30: 1233–5). We have recently published a similar study of 69 Meckel’s diverticula, in which four of 13 diverticula with gastric mucosa were colonised by organisms indistinguishable from H pylori.1 There was an active histological ‘gastritis’ present in all four cases containing the bacteria. Other authors showed ‘gastritis’ but no organisms. In one case where organisms were present there was a perforating ulcer within the focus of heterotopic mucosa, while in the other cases the bacteria were clearly not related to the patient’s symptoms. Bacteria were scanty in three of the four cases. The odds would seem to be stacked against H pylori successfully colonising what is often only a tiny focus of gastric mucosa at this site. Studies on reflux gastritis have shown that colonisation of gastric mucosa is inhibited in the presence of alkaline duodenal contents.2 Furthermore, the organism does not colonise small intestinal mucosa,1 and in some diverticula the heterotopic tissue is situated beneath the normal surface epithelium, where colonisation could potentially not occur. In view of these adverse factors, the finding of even infrequent colonisation of human Meckel’s diverticula by H pylori is significant, as it suggests that large numbers of bacteria are likely to be traversing the length of the bowel while still remaining viable. If this is so, transmission of H pylori from person to person by the faecal-oral route is entirely feasible.

K M NEWBOLD M H O’CONNOR Department of Pathology, Medical School, University of Birmingham and *Department of Medicine, Tulane General Hospital, New Orleans, Louisiana


Acrodermatitis enteropathica with normal zinc concentrations

Str,—I was extremely interested to read of the abnormalities of Paneth cells characteristic of this disease in a child with normal serum zinc concentrations3. I must comment on the statement that the high zinc content of the normal Paneth cell renders it particularly vulnerable to zinc deficiency.

The belief that human Paneth cells contain high concentrations of zinc is based on the histochemical findings in rat small intestine using dithizone. Almost all the zinc in these cells is bound to metallothionein4. We have shown that human Paneth cells are dithizone negative and that human and rat Paneth cells on x ray microanalysis contain no measurable zinc than other intestinal cells and that in man Paneth cells had lower zinc levels than goblet cells, stem cells, and enterocytes in jejunum and ileum.5

Our study on Paneth cell abnormalities in acrodermatitis enteropathica and the effect of the zinc therapy is cited by Dr Mack and colleagues. We agree that zinc deficiency is associated with Paneth cell abnormalities. Rat Paneth cells have been reported to contain the zinc binding protein metallothionein (MT) and we have done some preliminary immuno-histochemical studies on human Paneth cells using a monoclonal antibody raised in mice to horse MT1 and MT2. Paneth cells were strongly positive but both goblet and crypt epithelial cells showed punctate positivity as well.

We conclude that present evidence does not indicate that the Paneth cell has an exceptionally high zinc content when compared with other intestinal epithelial cells, but do not disagree with the suggestion that it may be sensitive to changes in body zinc status.

The role played by metallothionein in zinc metabolism of intestinal epithelial cells indicating Paneth cells needs further investigation.

MARGARET E ELMES Dept of Pathology, Heath Park, Cardiff CF4 4XN


Reply

Str.—We thank Dr Elmers for her interest in our recent paper. We are also grateful for her comments regarding her work on x ray microanalysis of zinc in intestinal tissues which adds further to the discussion in our case report. Dr Elmers also raises an interesting topic with regards to the metallothionein content of Paneth cells.

Although there has been speculation that metallothionein plays a homeostatic role in the metabolism of zinc, the true role remains unknown. Metallothioneins are inducible by a number of agents, including zinc itself. It appears that Paneth cells contain greater levels of metallothionein than other cells in the small intestine.

Whether this increased metallothionein level is a primary event and in some way responsible for greater susceptibility of the Paneth cell to changes in body serum zinc status when compared with other markers, or whether this is secondary to increased synthesis will be the subject of further research.

DAVID R MACK AND M H O’CONNOR Dept of Paediatrics, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada


Some possible pathological consequences of peptic ulcer therapy

Str.—The past 25 years have produced...
Helicobacter pylori infection in Meckel's diverticula.

K M Newbold and H J O'Connor

Gut 1990 31: 243
doi: 10.1136/gut.31.2.243-a

Updated information and services can be found at:
http://gut.bmj.com/content/31/2/243.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/