Role of reactive oxygen metabolites in experimental colitis

A Keshavarzian, G Morgan, S Sedghi, J H Gordon, M Doria

Abstract

Reactive oxygen metabolites are potent inflammatory mediators that may be involved in tissue injury in inflammatory bowel disease. To evaluate their role in inflammatory bowel disease, we investigated the effects of lowering the activities of reactive oxygen metabolites in experimental colitis induced by intracolonic administration of acetic acid in rats. Intracolonic administration of 5% acetic acid caused severe inflammation (mean (SEM) inflammatory score was 24.3 (0.7) of a maximum score of 32). Acetic acid at 2-5% produced moderate inflammation (score = 17 (1.4) to 4-0 (0.5) in control rats). This lower dose was used for subsequent experiments. Specific superoxide anion scavenger methoxypolyethylene glycol-superoxide dismutase, and reactive oxygen metabolites scavenger, sulfasalazine, significantly decreased the severity of inflammation (scores: 8 (4-4) and 9-8 (2-2) respectively). The xanthine oxidase inhibitors, tungsten and pterin aldehyde, failed to improve inflammation but another xanthine oxidase inhibitor, allopurinol, a compound with known superoxide anion scavenging effect, did limit the inflammation (10(2)). Inhibition of hydroxyl radical production by deferoxamine or lowering hydroxyl radical values by a scavenger, dimethyl sulfoxide, did not affect the severity of inflammation. These data suggest: (1) that reactive oxygen metabolites play an important role in experimental colitis, (2) that the xanthine oxidase pathway is not a major source of reactive oxygen metabolites in colitis, and (3) that tissue injury in experimental colitis is not caused by generation of hydroxyl radicals.

Chronic idiopathic inflammatory bowel disease is a common inflammatory disorder of unknown aetiology. Even though the initiating factors are not known, it is clear that once the inflammation is established, the typical course of the disease is such that a series of episodic acute attacks become superimposed upon chronic disease. It is also known that inflammatory mediators modulate the course of inflammatory bowel disease and play an important role during acute attacks. Among these mediators are prostaglandins and reactive oxygen metabolites. Although the role of prostaglandins has been extensively investigated, the part played by reactive oxygen metabolites has not yet been evaluated. It is known that gut is capable of generating reactive oxygen metabolites and that these seem to be important in inflammation associated with reperfusion injury after intestinal ischaemia. Hence, it is logical to postulate that reactive oxygen metabolites may also play an important role in tissue injury in inflammatory bowel disease. We hypothesise that excessive production of reactive oxygen metabolites is a final common pathway that causes or contributes considerably to the tissue injury that occurs during acute attacks of inflammatory bowel disease. Thus, agents that lower amounts of reactive oxygen metabolites (by inhibiting their production or by scavenging) will reduce the inflammation. The aim of this study was to determine whether lowering the values of reactive oxygen metabolites could reduce the tissue injury and inflammation in an animal model of colitis.

Methods

PRODUCING COLITIS IN RATS

Female Fisher rats (Harlan, Indianapolis, IN, USA) were used. Each rat was anaesthetised using 45 mg/kg pentobarbital (Butler, Alsip, IL, USA) intraperitoneally. Then a midline incision was made and the colon was isolated. The junction of the caecum and ascending colon was identified. Two ml of acetic acid at various concentrations (1-25%, 2-5%, 3%, 3-75%, and 5%) were injected at this point followed by 3 ml of air through a 25 gauge needle. Two ml of normal saline were substituted for acetic acid in control rats. Animals were allowed to eat and drink freely throughout the experiments. The animals were sacrificed 96 hours after intracolonic injection of acetic acid. The colon was removed and fixed in formalin for histological analysis of the severity of inflammation.

HISTOLOGICAL EVALUATION OF INFLAMMATION IN THE COLON

Coded slides were evaluated by one of the authors (MD) without knowledge of the groups of animals. The following eight criteria were used: vascular dilatation, oedema, epithelial cell loss, cellular mucus depletion, neutrophil infiltration, eosinophil infiltration, mononuclear cell infiltration, and fibrosis. Each criterion was scored on an ascending scale of 0–4. The total possible score was 32 (absence of any abnormality = 0, most severe inflammation = 32).

EXPERIMENTAL DESIGN

Four experimental groups were studied: (a) control group – intracolonic injection of saline plus systemic administration of vehicle; (b) acetic acid group – intracolonic injection of acetic acid plus systemic administration of vehicle; (c) experimental group – intracolonic injection of acetic acid plus systemic administration of experimental agent; (d) experimental control
group – intracolonic injection of saline plus systemic administration of experimental agent. Since acetic acid did not produce colitis in all rats each week, a minimum of four rats were used in the acetic acid group each week. The results of the experiments of only those weeks that have unequivocal colitis (score 10 or more) in all rats in the ‘acetic acid group’ were analysed.

EXPERIMENTAL AGENTS
The following experimental agents were used: (1) A superoxide anion scavenger, methoxy- polyethylene glycol:superoxide dismutase was used (2000–5000 U/mg protein (Sigma Chemical Co St Louis, MO, USA)). Some 15 000 U/kg/day were given intraperitoneally beginning on the day of intracolonic administration of acetic acid and continued daily until the rats were sacrificed. Controls rats received equal volumes of methoxypolyethylene glycol 5000 (Sigma) intraperitoneally, beginning the day of intracolonic administration of acetic acid and continued daily until the rats were sacrificed. (2) Sulfasalazine (Pharmacia, Piscataway, NJ, USA) 200 mg/kg, was given orally daily for four days before the induction of colitis and continued daily until the rats were sacrificed. (3) Xanthine oxidase inhibition: three known xanthine oxidase inhibitors were given – allopurinol, tungsten, and pterin aldehyde. Each agent was started one week before the induction of colitis and was continued daily until the animals were sacrificed. The allopurinol (Sigma Chemical Co) was initially dissolved in water and titrated to pH 11 with NaOH to achieve optimal dissolution. Nine rats were initially given intraperitoneal allopurinol 100 kg/kg. Because of unacceptable high mortality secondary to chemical peritonitis, however, allopurinol was given orally in a subsequent group of eight rats. The route of administration of allopurinol had no effect on the outcome and the results were subsequently pooled for analysis. Tungsten (Aldrich, Milwaukee, WI, USA), 100 μg/ml of drinking water with sucrose 10 g/l, was given daily. Mean daily water consumption was 26 ml (range: 13–27 ml). Each animal consumed a low molybdenum diet (NCI Biochemicals, Columbus, OH, USA) throughout the experiment. Commercially prepared folic acid which is contaminated with pterin aldehyde (Aldrich, Milwaukee, WI) 100 μmol/l of drinking water was given daily. Mean daily water consumption was 20 ml (range: 18–22 ml). Additionally each rat received 50 mg/kg of folic acid by intragastric gavage. (4) Lowering the values of hydroxyl radicals: (a) Dimethyl sulfoxide (Sigma) was dissolved in drinking water in a 5% concentration. Each rat was given dimethyl sulfoxide for seven days before the induction of colitis and this was continued until the animals were sacrificed. The mean daily water consumption was 31 ml (range: 22–45 ml). (b) Deferoxamine (Aldrich), 50 mg/kg, was given intramuscularly.

Morphological change in rat colons after intraluminal administration of acetic acid. (a) normal colon; (b) colon at 96 hours after 2·5% acetic acid: non-transmural inflammation characterised by necrosis, ulceration, predominantly neutrophilic infiltration, and mucin depletion (inflammatory score =16); (c) colon at 96 hours after 2·5% acetic acid and intraperitoneal allopurinol 100 mg/kg/day: significant reduction in the degree of inflammation (inflammatory score =8); (d) colon at 96 hours after 5·0% acetic acid: transmural inflammation with extensive necrosis, ulceration, and white blood cell infiltration (inflammatory score =25). (All original magnification ×400.)
seven days before induction of colitis and was continued daily until animals were sacrificed.

MEASUREMENT OF XANTHINE OXIDASE
Xanthine oxidase activity was measured in colonic mucosal scrapings. Tissues were obtained from control animals and treated with allopurinol, tungsten, or folic acid (see treatment schedules above). Xanthine oxidase activity was measured by a standard technique. In brief, colonic mucosal scrapings were suspended in 333 volumes (that is, 30 mg/ml of 50 mM potassium phosphate buffer, pH 7.8, containing 1 mM EDTA. Tissues were homogenized using a Brinkmann Polytron (Brinkmann Instruments, Westbury, NY, USA). The resulting homogenate was centrifuged for 20 minutes at 30 000 g. The xanthine oxidase activity of the supernatant was determined spectrophotometrically by monitoring uric acid production at 295 nm. Reactions were carried out in 1-2 ml containing 100 mM xanthine, with or without 50 mM allopurinol, at 25°C. One mU of xanthine oxidase activity was defined as the amount of enzyme activity required to produce 1 µmol of urate/minute at 25°C.

STATISTICAL ANALYSIS
Histological scores were compared between the groups of animals. The Mann-Whitney U test was used to define a statistically significant difference in each experiment. Data are presented as mean (SEM). A result was considered significant if the probability value was less than 0.05.

These studies were approved by the Animal Committee at Loyola University Medical School and Hines VA Hospital. Animals were housed and experiments were carried out in an AAALAC accredited facility in accordance with the Guide for the Care and Use of Laboratory Animals.

Results

ACETIC ACID INDUCED COLITIS
Intracolonic injection of acetic acid produced colitis in rats (Fig). This effect was dose-dependent with 5% acetic acid causing the most severe colitis (mean (SEM) score=24-3 (0-7)) and 1-25% failing to produce colitis (4-3 (0-7); controls: 3-9 (0-5)). Concentrations of 2-5% and 3% acetic acid were used for subsequent experiments since they produced moderate colitis (score=17-0 (1-4) and 15 (2-3) respectively).

EFFECT OF LOWERING THE VALUES OF SUPEROXIDE ANION
A long acting, specific superoxide anion scavenger methoxypolyethylene glycol/superoxide dismutase significantly decreased the inflammation by 50% in rats (Table). Inflammatory scores in three of four rats were similar to control rats. Sulfasalazine also significantly reduced the inflammation by 40% (score=9-8 (2-2)). As with methoxypolyethylene glycol: superoxide dismutase, 60% of the rats had similar scores to control rats.

EFFECT OF XANTHINE OXIDASE INHIBITION
As expected, giving allopurinol, tungsten, and folic acid to the rats significantly inhibited colonic mucosal xanthine oxidase activity (control (n=6): 34-5 (3-8); allopurinol (n=6): 0-47 (0-47); tungsten (n=6): 7-93 (4-12); folic acid (n=5): 14-84 (5-63) µU/g protein). Although the percentage inhibition of experimental groups varied from 98% (allopurinol) to 57% (folic acid), post hoc test (Scheffe's) indicated no significant differences in experimental groups. Allopurinol also significantly lowered inflammatory scores by 40% in rats to 10 (2). Half of the rats had similar inflammatory scores to controls. In contrast, neither tungsten (score=15-1 (1-8)) nor folic acid (score=16-1 (0-35) significantly influenced the inflammation, in spite of appreciable inhibition of xanthine oxidase activity.

EFFECT OF LOWERING THE VALUES OF HYDROXYL RADICAL
Dimethyl sulfoxide, a potent hydroxyl radical scavenger, failed to improve inflammation (score =17 (4-4)). Inflammatory scores in the rats with the highest water intake (thus the highest amount of daily dimethyl sulfoxide, tungsten, or folic acid intake) were not different from those who drank the least. Inhibition of hydroxyl radical production by deferoxamine also failed to improve inflammation (score=21-9 (1-1)).

Discussion
Oxygen free radicals are known to be important factors in inflammation. Their role in ischaemia/reperfusion injury of the gut has been well established, and a part in inflammatory bowel disease has been suggested. For example, a successful response to superoxide dismutase, a superoxide anion scavenger, has been reported in several patients with Crohn's disease. Secondly, chemiluminescence, which estimates oxygen free radical production, has been found to be raised in the white blood cells of patients with Crohn's disease. Finally, sulfasalazine, which is widely used in the treatment of inflammatory bowel disease, is an efficient reactive
Role of reactive oxygen metabolites in experimental colitis

The role of reactive oxygen metabolites in the pathogenesis of colitis is well established. These metabolites, which include superoxide anions, hydrogen peroxide, and hydroxyl radicals, can cause significant damage to colonic tissues.

1. Superoxide anions are produced by xanthine oxidase and can be scavenged by the enzyme superoxide dismutase. Superoxide dismutase is an antioxidant enzyme that converts superoxide anions into hydrogen peroxide and oxygen.

2. Hydrogen peroxide can be further converted into hydroxyl radicals by the enzyme catalase. Hydroxyl radicals are highly reactive and can cause damage to DNA, proteins, and lipids.

3. Inflammatory bowel disease, particularly Crohn's disease, is associated with increased production of reactive oxygen metabolites. This increased production of reactive oxygen metabolites can lead to tissue damage and inflammation.

4. The use of antioxidants, such as N-acetyl-L-cysteine (NAC), has been shown to reduce the severity of colitis in experimental models. NAC is an antioxidant that can scavenge hydroxyl radicals and decrease the production of nitric oxide.

5. Recent studies have shown that the use of anti-inflammatory drugs, such as sulfasalazine, can also reduce the production of reactive oxygen metabolites and improve clinical outcomes in patients with inflammatory bowel disease.

In conclusion, the role of reactive oxygen metabolites in the pathogenesis of colitis is significant. Further studies are needed to explore the mechanisms by which these metabolites contribute to tissue damage and inflammation in the colon. The use of antioxidants and anti-inflammatory drugs may provide new therapeutic strategies for the treatment of inflammatory bowel disease.
Keshavarzian, Morgan, Sedghi, Gordon, Doria

Role of reactive oxygen metabolites in experimental colitis.

A Keshavarzian, G Morgan, S Sedghi, J H Gordon and M Doria

Gut 1990 31: 786-790
doi: 10.1136/gut.31.7.786

Updated information and services can be found at:
http://gut.bmj.com/content/31/7/786

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/