Effect of ulcerative colitis and smoking on rectal blood flow

E D Srivastava, M A H Russell, C Feyerabend, J Rhodes

Abstract
Rectal blood flow was measured by laser doppler flowmetry over 60 minutes in eight patients with colitis in remission and eight healthy male non-smokers. Ten smokers were also examined on two occasions, one of which included smoking a cigarette. Plasma nicotine concentrations were measured in smokers. All subjects showed a pronounced fall in rectal blood flow in the first 30 minutes and patients with colitis had significantly higher values compared with smokers (p<0.002; p<0.04) and non-smokers (p<0.007; p<0.002) during the first and second 30 minutes respectively. Values in smokers and non-smokers were similar, but smoking a cigarette was associated with a significant fall in blood flow (p<0.04) and this change was inversely related to the rise in plasma nicotine concentration (r=-0.63; p<0.05). The findings may be relevant to the association between colitis and the smoking history.

The aetiology of ulcerative colitis remains unknown, although it is now recognised as a disease predominantly involving non-smokers and ex-smokers. If the smoking status determines whether ulcerative colitis develops, it is pertinent to examine mechanisms which may be involved. With this in mind we have examined the effect of smoking on rectal blood flow including appropriate controls and patients with colitis.

Methods

SUBJECTS
Eight patients with ulcerative colitis (seven men and one woman, mean age 39 years, range 26–51 years), all non-smokers with distal colitis in remission, were examined; they were receiving sulphasalazine or mesalazine only; eight healthy male non-smokers (mean age 34, range 21–48 years) and 10 healthy men smokers (mean age 45, range 21–66 years), who smoked at least 10 cigarettes daily, were also examined. The control subjects, smokers, and non-smokers were receiving no medication. Preliminary studies showed that in patients with active ulcerative colitis blood and mucus affected the recording by obliterating the signal, thus only patients with colitis in remission were studied, giving a continuous uninterrupted reading.

EXPERIMENTAL DESIGN
Rectal blood flow was measured in volts by laser doppler flowmetry with an angled probe (Peri-flux PF2, PF 110, angle probe, Perimed, Stockholm, Sweden), mounted in portex tubing with an external diameter of 6·6 mm (Fig 1). A side arm was attached at right angles to the probe and was taped in the natal cleft to maintain the probe position while records were made.

The probe was inserted 5 cm from the anal margin using a modified proctoscope which had an 8 mm strip cut from the shaft of the scope. This made it possible to insert the proctoscope, visualise clean mucosa on the anterior rectal wall, position the probe, and then withdraw the scope. Rectal blood flow was measured for 60 minutes in each subject and smokers had two sets of measurements, one of which involved smoking a cigarette at 30 minutes. The order of these two sessions in smokers was randomised. All smokers had completed smoking their cigarette within five minutes and no cigarette had been smoked in the previous two hours. Subjects smoked their usual brand and were instructed to inhale as deeply as possible. Preliminary studies showed an early pronounced fall in rectal blood flow after the proctoscope was introduced, but this reached a plateau after 20 to 30 minutes. In view of this, smokers were asked to have their cigarette 30 minutes after the probe was inserted and venous blood was taken for measurement of plasma nicotine concentration at 30, 35, 40, 45, 50, 55, and 60 minutes; when they did not smoke, samples were taken at 30 and 60 minutes. Ten ml venous blood was taken on each occasion via a cannula.

Figure 1: The probe for measurement of blood flow was mounted in portex tubing with the head 5 cm from the anal margin. A side arm was taped in the natal cleft to maintain the position of the probe head in relation to mucosa.
ing paired and unpaired t tests and parametric (Pearson) correlation coefficients.

Results
Each group of subjects showed a steady fall in rectal blood flow which was usually limited to the first 20 minutes. Mean values for patients with ulcerative colitis were higher than for the other groups throughout the 60 minutes (Fig 2) and differences were significant during both the first (p<0.002) and the second (p<0.04) 30 minute periods (Table I).

Blood flow measurements in control subjects, smokers, and non-smokers were similar and overall values in the first and second 30 minute periods did not differ significantly between the groups. Smoking, however, was associated with a significant fall in blood flow of 0.13 volts between 28 and 59 minutes (p<0.04). During experiments where smokers did not smoke there was a significant rise after 16 minutes, whereas the blood flow in non-smokers continued to fall (Fig 2).

After smoking there was a pronounced rise in plasma nicotine concentration with peak values between 30 and 35 minutes followed by a steady fall over the remaining 25 minutes (Fig 3). When subjects were not smoking there was no significant change in the plasma nicotine concentration between 30 and 60 minutes. The maximum fall in mucosal blood flow was related to the maximum rise in plasma nicotine concentration (r=-0.63; p<0.05; Figure 4) but was not related to the peak or mean concentrations of nicotine between 30 to 60 minutes.

Discussion
The consistent fall in rectal blood flow which occurred in the first 20 to 30 minutes probably reflects a return to normal of changes which followed the proctoscopic examination. Blood flow in the ulcerative colitis group was consistently higher than in the control groups which were similar. Smoking was accompanied by a fall in the rectal blood flow, which in turn was related to the rise which occurred in the plasma nicotine concentration in individual patients.

The laser doppler technology for measuring mucosal blood flow has proved sensitive and reproducible in carefully controlled experimental studies in the human colon during surgery. The method has been criticised, however, because the laser beam penetrates mucosa 6 mm, and recorded changes in blood flow may be due to changes at different levels which cannot be quantified. Records are also subject to wide variations from artefacts which accompany movement or adjustment of the probe. Measurements over a long period, however, with patients in the left lateral position gave steady records and superimposed changes probably reflect rectal blood flow rather than artefact, which is easily recognised because of its abrupt nature. The probe was placed over clean mucosa and its position within the portex tube ensured that while in contact with the mucosa there was a gap of 2 mm between the probe surface and the mucosa.

The equipment had a signal level indicator and a lamp which changed colour when the probe position was more than 6 mm from the mucosal surface, but this rarely occurred. Records over a long period made it possible to achieve a stable measurement of mucosal blood flow. All colitis patients were in remission and after preliminary work our records were made in a standardised manner to limit variations which might invalidate the findings. After smoking the rectal blood flow did not fall in all subjects, but falls that occurred were related to rises in plasma nicotine concentration; in six subjects the fall was between -0.02 volts and -0.28 volts and associated with a rise in the plasma nicotine concentration of over 22 ng/ml. Among four subjects whose rectal blood flow did not fall, the nicotine concentrations rose in two but showed only minor change in the other two. The mean peak plasma concentrations of nicotine were higher than previously reported (Table II), which may be due to the subjects smoking the cigarette quickly (within five minutes) with blood levels recorded while smoking; initial measurements are usually delayed until two minutes after completion of smoking.

Rectal blood flow in smokers was higher in the first 30 minutes before a cigarette was smoked than in experiments where subjects did not smoke; we can only suggest that the increase which was observed in four of the subjects before smoking may be some form of anticipatory phenomenon comparable with salivation before eating food. This suggestion is made because there was no significant difference in plasma nicotine concentration at 30 minutes in the two series of experiments with smokers. The fall in blood flow which followed smoking appeared to be independent of any rise in blood flow before smoking.

When subjects began to smoke there was an initial rise in blood flow which may have been

![Figure 2: Mean rectal blood flow measured with a laser doppler probe and recorded in volts continuously over 60 minutes in eight patients with ulcerative colitis, eight healthy male non-smokers, and 10 healthy male smokers. Recordings were made twice in smokers, on one occasion smoking a cigarette at 30 minutes.](http://gut.bmj.com/)

Srivastava, Russell, Feyerabend, Rhodes
Effect of ulcerative colitis and smoking on rectal blood flow

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean first 30 mins</th>
<th>Mean second 30 mins</th>
<th>Difference between 28 and 60 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulcerative colitis smokers</td>
<td>0.92 (0.07)</td>
<td>0.86 (0.11)</td>
<td>−0.01 (0.05)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>0.75 (0.13)</td>
<td>0.64 (0.10)</td>
<td>−0.10 (0.05)</td>
</tr>
<tr>
<td>Ulcerative colitis non-smokers</td>
<td>0.92 (0.07)</td>
<td>0.86 (0.11)</td>
<td>−0.01 (0.05)</td>
</tr>
<tr>
<td>Smokers smoking</td>
<td>0.75 (0.12)</td>
<td>0.66 (0.23)</td>
<td>−0.09 (0.15)</td>
</tr>
<tr>
<td>Smokers not smoking</td>
<td>0.64 (0.18)</td>
<td>0.67 (0.22)</td>
<td>0.01 (0.15)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>0.75 (0.13)</td>
<td>0.64 (0.10)</td>
<td>−0.12 (0.13)</td>
</tr>
<tr>
<td>Smokers smoking</td>
<td>0.75 (0.13)</td>
<td>0.64 (0.10)</td>
<td>−0.10 (0.13)</td>
</tr>
<tr>
<td>Smokers not smoking</td>
<td>0.68 (0.18)</td>
<td>0.67 (0.22)</td>
<td>0.09 (0.15)</td>
</tr>
<tr>
<td>Smokers smoking</td>
<td>0.75 (0.12)</td>
<td>0.66 (0.23)</td>
<td>−0.09 (0.15)</td>
</tr>
<tr>
<td>Smokers not smoking</td>
<td>0.68 (0.18)</td>
<td>0.67 (0.22)</td>
<td>0.09 (0.15)</td>
</tr>
</tbody>
</table>

NS = not significant.

TABLE II Plasma nicotine concentrations (ng/ml) in 10 healthy male smokers during measurement of rectal blood flow. Values were obtained at 30 and 60 minutes while not smoking and at more frequent intervals after smoking a cigarette at 30 minutes.

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Mean (SD) (ng/ml)</th>
<th>Range (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After smoking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>14.2 (5.4)</td>
<td>2.4-22.3</td>
</tr>
<tr>
<td>35</td>
<td>53.0 (29.9)</td>
<td>6.8-84.8</td>
</tr>
<tr>
<td>40</td>
<td>47.3 (18.6)</td>
<td>35.0-64.2</td>
</tr>
<tr>
<td>45</td>
<td>36.7 (15.4)</td>
<td>7.7-58.6</td>
</tr>
<tr>
<td>50</td>
<td>31.5 (11.9)</td>
<td>7.3-43.0</td>
</tr>
<tr>
<td>55</td>
<td>29.3 (11.9)</td>
<td>6.5-47.5</td>
</tr>
<tr>
<td>60</td>
<td>26.3 (10.0)</td>
<td>6.0-37.7</td>
</tr>
<tr>
<td>Mean 30 to 60</td>
<td>33.7 (13.8)</td>
<td>6.3-50.5</td>
</tr>
<tr>
<td>Peak values</td>
<td>54.9 (28.4)</td>
<td>7.7-93.0</td>
</tr>
<tr>
<td>Maximum rise</td>
<td>40.8 (25.9)</td>
<td>5.1-70.7</td>
</tr>
<tr>
<td>Not smoking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>18.8 (9.2)</td>
<td>2.9-33.7</td>
</tr>
<tr>
<td>60</td>
<td>14.2 (6.7)</td>
<td>3.3-26.5</td>
</tr>
</tbody>
</table>

due to a minor change in the probe position, because early deep inhalation was associated with visible tightening of the anus around the probe; this was only evident for the first few minutes. Previous work has shown a rise in blood flow after mechanical stimulation of the colonic mucosa in both animals and humans. Ahn et al also observed a significant increase with measurements from the serosal surface of bowel after instrumentation of the lumen, including colonoscopy.

Our mean (SD) values for blood flow are lower than those recorded in the stomach, peak values 7.9-2.5 volts, jejunum 7.6-2.9 volts, ileum 6.1-2.6 volts, and colon 5.4-2.3 volts, but confirm previous reports of higher values in proctitis and ulcerative colitis.

Although the sample size was small, the data show that smoking reduces rectal blood flow; this is probably due to nicotine induced vasoconstriction associated with a transient rise in blood pressure. Comparable work on the effect of smoking and nicotine on blood flow to other organs has shown constriction in cutaneous blood vessels with decreased blood flow to the hands and feet; skin temperature is a good indicator of cutaneous blood flow and both finger tip and toe temperatures fall consistently after exposure to nicotine. Skin temperatures during and after a nicotine infusion are closely related to absolute values of plasma nicotine with no evidence of tolerance. In smokers with coronary heart disease the normal pattern of nicotine induced increase in coronary blood flow is converted to a decrease in flow which involves the area at risk of underperfusion due to coronary artery stenosis. Although not yet proved directly by angiography, all available data are consistent with the concept that underperfusion which follows smoking is due to increased vascular tone at the site of the critical stenosis.

![Figure 3](https://example.com/figure3.png) Rectal blood flow measured with a laser doppler probe in a healthy man who smoked a cigarette at 30 minutes. Plasma nicotine concentrations are recorded before and for 30 minutes after smoking.

![Figure 4](https://example.com/figure4.png) Correlation between change in rectal blood flow measured with a laser doppler probe in 10 healthy male smokers at 6 minutes after smoking a cigarette with the maximum rise in plasma nicotine after smoking (r = 0.63; p < 0.05).
A reduction in rectal blood flow induced by smoking may be one of the mechanisms whereby smoking influences the clinical course of ulcerative colitis. Precisely how this affects pathogenesis is open to speculation, but changes in blood flow may reduce amounts of inflammatory mediators reaching the mucosal surface.

Patients with ulcerative colitis who do not smoke have reduced mucus production compared with non-smoking controls, but colitis patients who smoke have similar rates of production to controls. 19 Smoking could conceivably increase mucus production and improve the mucus barrier in addition to reducing rectal blood flow.

We thank Professor R Marks, Department of Dermatology, for use of the laser doppler flowmeter.

14 Roth GM, McDonald JB, Sheard C. The effect of smoking cigarettes and intravenous administration of nicotine on the electrocardiogram, basal metabolic rate, cutaneous temperature, blood pressure and pulse rate of normal persons. TAMA 1944; 125: 761-7.
Effect of ulcerative colitis and smoking on rectal blood flow.

E D Srivastava, M A Russell, C Feyerabend and J Rhodes

Gut 1990 31: 1021-1024
doi: 10.1136/gut.31.9.1021

Updated information and services can be found at:
http://gut.bmj.com/content/31/9/1021

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Articles on similar topics can be found in the following collections
Ulcerative colitis (1113)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/