LETTERS TO THE EDITOR

Anomalous short plasma elimination half life in a patient intoxicated with bismuth subcitrate

Sir,—The report by Playford et al.1 provides important information. There is only one other report of bismuth intoxication with the use of the subcitrate formulation in humans.2 This report was marred by the absence of assay data. The levels reported by Playford et al. are well outside the values reported from other studies involving bismuth subcitrate (Table1).3 These increased levels are consistent with a doubling of dose and renal impairment, if it is assumed that bismuth clearance reduces proportionally to creatinine clearance. Specifically, if upper steady-state limits of 58 mg/l are assumed in patients with normal renal clearance (=120 ml/min) (see Table), and a creatinine clearance of 15 ml/min in the patient is assumed (case report value), then upper limits of 480 mg/l could be predicted. If daily doses were doubled, then values of 960 mg/l would be predicted, in close accord with the case report values of 880 mg/l.1

There is, however, an anomaly related to estimated half life of elimination in plasma in this patient. We derive a value of 13–15 days from the published figure using terminal phase data. Previous reports of elimination half life values in both urine and plasma in the normal range of plasma bismuth concentrations3,4 suggest that the patient is intoxicated3,4 and give values of 18–20 days. If renal elimination alone determines elimination half life, then a longer half life should have resulted with prolongation proportional to renal clearance than reported.

There is evidence in both animals and humans for excretion of bismuth into gut via bile on acute dosing.5,6 Such a mechanism of parallel, extrarenal elimination would need to be invoked to allow preservation of a short half life as reported. The apparent anomaly of a high level and a short half life can be resolved if altered absorption is proposed together with parallel hepatic and renal clearance. The altered absorption in this patient reported by Playford and coworkers5 may be explained by upper gastrointestinal surgery with rapid gastric emptying.

Because of direct relevance to this discussion we present preliminary data from three patients given 430 mg daily of bismuth subcitrate (Denol) for four days after cholecystectomy and placement of T-tube in the common bile duct. Blood, urinary, and bile collections were made over six hours after the morning dose on the fifth day. Relative clearances in urine and bile after assay of samples is shown in the Figure.

Until another class of agents is discovered with equal efficacy1,7 there will be a need to continue the use of bismuth in type B gastritis and ulcer disease.5 There is a need to understand the processes of bismuth handling before restriction policies can be made. Caution must be exercised in patients with renal impairment and possibly hepatic impairment. The ready availability of simple assays8 allows plasma monitoring to be used to optimise safe usage, according to accepted plasma level guidelines.9

A J McLEAN J S ISLAM
Clinical Pharmacology Department, Alfred Hospital, Prahran, Victoria, 3181 Australia
J R LAMBERT
Monash University Department of Medicine


Macroscopic activity in inflammatory bowel disease

Sir,—We reply to the letter from Dr Andrew Williams (Gut 1990; 31: 481) in which he disagrees with the conclusion in our paper1 that the majority of macrophages isolated from normal colon and ileum are downregulating Ia. This statement is based on the results presented in the paper and evidence from other studies quoted in the discussion.

Our study shows that a significantly greater proportion of macrophages isolated from mucosa with active ulcerative colitis and Crohn’s disease (and not just Crohn’s disease) were able to undergo respiratory burst compared to those isolated from normal mucosa. In the latter, a large proportion did not show evidence of a release of oxygen radicals in response to three different triggers. Despite stimulation with interferon-gamma (perhaps the most potent activator of macrophages), a large proportion of macrophages from normal

Plasma concentration after chronic treatment with colloidal bismuth subcitrate

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of subjects</th>
<th>Duration of treatment (days)</th>
<th>Formulation</th>
<th>Range of steady-state concentration (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton et al. (1983)</td>
<td>20</td>
<td>6</td>
<td>Chew tablet</td>
<td>5–51</td>
</tr>
<tr>
<td>Dekker et al. (1986)</td>
<td>76</td>
<td>4</td>
<td>Chew tablet</td>
<td>3–34*</td>
</tr>
<tr>
<td>Froomes et al. (1989)</td>
<td>12</td>
<td>6–8</td>
<td>Chew tablet</td>
<td>2–21*</td>
</tr>
<tr>
<td>Gayeey et al. (1989)</td>
<td>9</td>
<td>6</td>
<td>Swallow coated</td>
<td>8–58</td>
</tr>
<tr>
<td>Nwokolo et al. (1989)</td>
<td>6</td>
<td>4–18</td>
<td>Swallow coated</td>
<td>4–38</td>
</tr>
</tbody>
</table>

* Represents peak blood concentration rather than steady-state concentration.
mucosa were not able to undergo respiratory burst. We suggest therefore that these cells which are unresponsive to interferon-gamma are 'desensitised' or downregulated. It is possible that the small proportion of macrophages from normal mucosa that are able to release oxygen radicals may enhance their production of the reactive metabolites after stimulation with interferon-gamma. However, this still leaves a large proportion that did not show evidence of being able to undergo respiratory burst after stimulation.

Other studies have also shown that the macrophages from normal colonic mucosa are also not able to express interleukin-2 receptors despite stimulation by interferon-gamma. In contrast, significant proportions of macrophages from mucosa with active inflammatory bowel disease expressed these receptors.

That these latter cells are activated was shown by their capacity to release oxygen radicals. Macrophages isolated from mucosa with active inflammatory bowel disease also produce more interleukin-18 (IL-18) than cells from normal mucosa. Lipopolysaccharide enhanced IL-18 production by cells from inflamed mucosa but not from normal mucosa. Our studies suggest enhanced antigen presenting capacity by macrophages from mucosa with active inflammatory bowel disease.

We suggest, therefore, that a large proportion of monocytes and mononuclear cells in normal ileal and colonic mucosa are downregulated in their capacity to perform a number of functions. This downregulation may be required under normal physiological conditions to protect against injury. As we have reported, we suggest that the enhanced functions by macrophages from mucosa with active inflammatory bowel disease - for example, respiratory burst capacity and IL-18 production - are due in large part to the lack of population of cells (most likely circulating monocytes migrating into the mucosa) which are primed or in an enhanced state of activation. In the mucosa these cells may be phenotypically different.

We do not think that prostaglandin E2 is likely to be important in priming macrophages, as studies have shown that at very low concentrations it can inhibit class II expression. Enhanced antigen presentation is a feature of activated macrophages.

Intragastric acidity and serum gastrin after suffodine

Srir, — The recent paper by Smith and Pounder (Gut 1990; 31: 291–3) shows that the new competitive H₂ receptor antagonist suffodine, taken in doses of 600 mg H₂; induces virtually 24 hour gastric anacidity. Thus its antisecretory effect closely resembles that of the proton pump inhibitor omeprazole.

The study, however, is not without relevant methodological points. Firstly, the gastric circadian pH-integrals were obtained 'hourly'. The hourly sampling rate is inappropriate to represent what is happening to gastric acidity in time-dependent settings. Interleukin-1β and the usual acidity indexes calculated from these low frequency acquired pH profiles are almost invariably unreliable.

(1) The trapezoidal rule is a fairly robust way of calculating integrals of functions that are not very smooth, provided that the increase is several times lower than the duration of the shortest fluctuation of the function to be integrated. Since the circadian pH profile shows many rapid real pH fluctuations the one hour step does not allow the use of this numerical integration method.

(2) The experimental data not included in their paper for 10.00 and 20.00 hours in duodenal ulcer patients suggest that the clinical remission, cannot be replaced with datapoints obtained in normal subjects. More important, acidity measurements pertaining to healthy subjects are unlikely to correspond to those achieved with a very powerful H₂ receptor antagonist, such as suffodine. Moreover, since the integral of equally spaced series of data reflects the arithmetic mean, this replacement is simply useless.

(4) The authors state that the significance of the difference between the integrated 24 hour values was assessed using Wilcoxon's matched pair signed rank test. Even in an ideal case in which all the after treatment values are lower or higher than the before treatment values, by definition a test of this type cannot provide a probability level lower than 0.01. Moreover, in one of the seven cases the treatment integral did not increase, it is incorrect to report a p-value of less than 0.01.
Macrophage activity in inflammatory bowel disease.

Y R Mahida and D P Jewell

Gut 1990 31: 1086-1087
doi: 10.1136/gut.31.9.1086-a

Updated information and services can be found at:
http://gut.bmj.com/content/31/9/1086.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/