Duodenal ulcer and carbohydrate

Sir,—We have read with interest the results of the study from Nottingham by Katcnsch et al (Gut 1990; 31: 993-6) concerning the association between duodenal ulceration and fibre and refined carbohydrate intake. The findings suggested that relative risks were reduced by a high vegetable fibre and low refined sugar intake but not a high intake of cereal fibre.

We have continued to gather information about the geographical distribution of duodenal ulceration and the staple diets of high and low incidence areas, and we find no correlation between duodenal ulcer incidence and fibre intake alone. There are high incidences of ulceration in Ethiopia, Rwanda, and Burundi and in sorghum eating areas of India where the fibre intake is high.

The overall picture suggests that areas where polished rice, yams, or cassava are the staple foods the duodenal ulcer incidence is high. Where unrefined wheat, soya, some pulses or millets, or certain green vegetables form a large part of the staple diet the incidence is low.1

Experimental work on several animal models of peptic ulceration shows that the food substances mentioned above from low incidence areas contain a protective fraction which is liposoluble. The fraction is present in wheat bran but to a less degree in wheat germ.2 We think that it is a protective factor present in certain high fibre foods and not the fibre itself that protects against duodenal ulceration.2

FRANK I TOVEY
A PULAYARJ
Department of Surgery,
University College and Middlesbrough
School of Medicine,
The Royal Institute,
University of York
London WC1J 0J

3 Tovey Fl, Jayaraj AP, Clark CG. Fibre and duodenal ulcer. Lancet 1982; ii: 878.

Gastric acid and urininary acid excretion

Sir,—Johnson et al (Gut 1990; 31: 826-6) could not find a significant rise of urinary pH 2 hours after the start of a standard meal in non-diabetic patients (despite a reduction in urine acid output) nor in patients with vagotomy. They concluded that in the change of the urine acid output after a meal could not be detected by measuring pH because of the presence of buffers in normal urine. Their findings may reflect the inferiority of a standard meal to pentagastrin for maximal stimulation of gastric acid secretion.

We measured urinary pH in 14 duodenal ulcer patients with no vagotomy (group A) and in 14 patients after vagotomy (group B), before and two hours after pentagastrin 6 ug/kg subcutaneously. Median pH of basal urine in group A was 4-9 (range 3-9-5-7). Two hours after the meal the corresponding values were 6 2 (5-7-2). In group B preprandial and postprandial pH was 5-3 (4-7-5-0) and 5-3 (4-7-5-0).

Thus the conclusion drawn by Johnson et al is correct for pentagastrin stimulation after vagotomy, but not for duodenal ulcer patients who have not had a vagotomy.

YARON NIV
Gastroenterology Unit,
Rebecca Segel Government Hospital, Safed, Israel

Lipid pattern and plasma insulin in diabetics with gall stones

Sir,—We read with great interest the paper by Laasko and colleagues (Gut 1990; 31: 344-7) regarding the relation between serum lipids, plasma insulin, and gall stones in non-insulin dependent diabetic women. The authors suggest that diabetics with gall stone disease have higher fasting insulin concentrations and lower total and low density lipoprotein cholesterol than diabetics without gall stones.

In the introduction they state that no studies have been published comparing lipids and lipoproteins in diabetics with or without gall stones. Some years ago we reported different results on the relations between gall stones and serum lipids in non-insulin dependent diabetic patients. We studied total cholesterol, serum triglycerides, and apolipoproteins A I and B in 81 subjects with non-insulin dependent diabetes mellitus affected by gall stones and 305 diabetics without gall stone disease.1 We documented increased concentrations of triglycerides and decreased densitites of apolipoproteins A I in diabetic women with gall stones compared with those without, while no difference was shown in men. Total cholesterol and apolipoprotein B concentrations did not differ between groups. The observation of high concentrations of triglycerides in gall stones has been reported by most observers and is in agreement with published papers and conflicts with the data reported by Laasko. Our finding of such an association only in women agrees with the observation of more severe lipid alterations in women with gall stones. Nevertheless, an association of gall stones, low concentrations of high density lipoprotein cholesterol, and coronary disease found only in women.

The serum lipid pattern in our patients might be related to insulin concentration, as suggested by Laasko et al in another paper.1 In this regard, in a case-control study (34 patients with gall stones and non-insulin dependent diabetes mellitus v 30 controls without gall stones, comparable for sex, age, body mass index, and duration and metabolic control of diabetes) we also documented increased values of C peptide in subjects with gall stones compared with controls.

Concerning the possible mechanism by which hyperinsulinaemia might enhance gall stone formation, Laasko et al report that high insulin concentrations could activate low density lipoprotein receptors and increase plasma bile clearance of low density lipoprotein cholesterol. It, however, has also been reported that insulin is able to enhance the activity of B-hydroxy-B-methylglutaryl coenzyme A reductase and to suppress 7 alpha-hydroxylase with consequent increased cholesterol and decreased bile acid secretion in bile. According to this finding Bennis and Grundy4 showed that insulin administration in non-insulin dependent diabetics could increase cholesterol saturation of bile. In a preliminary retrospective evaluation of 386 subjects with non-insulin dependent diabetes mellitus we showed a significantly higher frequency of gall stones in patients treated with insulin compared with those being managed by diet or oral hypoglycaemic agents.5 This finding seems to support the hypothesis of an increased risk of gall stones in diabetics treated with insulin, but prospective investigations on this topic are necessary.

A CAROLI
G DEL FAYERO
F MARIO
Divisione Medica 1, Ospedale Civile di Montebelluna and Istituto di Medicina Interna (Gatteda di Malattia Apparato Digerente), Padova, Italy

Gastric acid and urinary acid excretion.

Y Niv

Gut 1991 32: 339
doi: 10.1136/gut.32.3.339-a

Updated information and services can be found at:
http://gut.bmj.com/content/32/3/339.2.citation

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/