Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation

W Kruis, G Forstmaier, C Scheurlen, F Stellaard

Abstract
Increasing consumption of refined sugar has been implicated in many gastrointestinal disorders on epidemiological grounds. Nine volunteers agreed to participate in a study comparing the effects of a diet containing 165 g refined sugar/day with a diet of only 60 g/day on gut transit, bile acid metabolism, and fermentative activity of the intestinal flora. The wet and dry weight, pH, and water content of the stools were similar on the two diets. On the high sugar diet mouth-to-anus transit time was significantly prolonged, despite a shortened mouth-to-caecum transit time. The faecal concentration of total bile acids and the faecal concentration of secondary bile acids increased significantly. Diet affected neither the serum bile acid pattern nor the concentration. Breath hydrogen tests showed significantly enhanced H₂ production on the high sugar diet. We conclude that the quantity of refined sugar in the diet can significantly influence gut function and the composition of bowel contents.

It has been suggested that changing eating habits in industrialized countries play a part in the pathophysiology of some common gastrointestinal diseases such as the formation of gall stones, colonic cancer, irritable bowel syndrome, diverticulosis of the colon, and inflammatory bowel disease. One of the changes in our nutrition is the increasing refined sugar intake. In the 100 years from 1870 to 1970 sugar consumption doubled. The average annual intake of sugar per capita is 35 kg in the Federal Republic of Germany, 50 kg in Britain and Australia, but only 20 kg world wide.

A diet containing refined foods results in excess energy intake – that is, it is fattening. Average calorie intake and obesity are related to the incidence of large bowel cancer and gall stones. In particular, high consumption of refined sugar is associated with the development of colorectal cancer, the formation of gall stones, and Crohn’s disease.

The ability, however, of epidemiological data to answer pathophysiological questions is limited. Experimental data on the effects of refined sugar on stool characteristics, gastro-intestinal transit, bacterial fermentation, and bile acid metabolism are rare. We therefore designed a study to try to determine the influence of diets that are low and high in refined sugar on those functions of the gut.

Methods
Nine healthy volunteers (five women, median age 24 years, range 23–26 years) gave informed consent and were included in the study, which was approved by the Ethics Committee of the Klinikum Grosshadern, University of Munich. All subjects were on a typical Western diet. Before entering the study they ingested 20 g Glaubers salt (sodium sulphate) to attain microbiological steady state conditions in the intestines as quickly as possible. Thereafter they took only 2000 ml/day of a commercially available formula diet (Fresumin plus, Fresenius AG, Oberursel, FRG, ingredients as listed in Table 1), with the exception that additional water, tea, and black coffee were allowed ad libitum. At the end of the 14 day control period marker studies, breath hydrogen tests, 48 hour stool collections, and fasting venous blood sampling were performed. The volunteers began the 14 day study period by again taking 20 g Glaubers salt. The diet now consisted of the same formula diet as in the control period, but with the addition of 120 g of refined sugar/day, thus increasing the total refined sugar content from 60 g/day to 165 g/day. To keep the diets roughly isocaloric, the total amount of formula diet was restricted to 1500 ml/day during the study period. The mean (SEM) weight of the subjects was similar during the control period (64.1 (5.2) kg) and the study period (63.5 (5.1) kg). At the end of the study period marker studies, breath hydrogen tests, and stool and blood collections were again carried out.

STOOL COLLECTION, WEIGHT, WATER, AND PH
Stools were collected for 48 hours urine free in plastic containers. Immediately after defecation stool pH was determined by a pH electrode, the wet stools were weighed, and 100 ml of 70% isopropanol was added to inhibit bacterial degradation of bile acids. The stools were stored at –20°C.

MARKER STUDIES
Transit through the whole gut was assessed by means of the single stool technique according to Cummings and Wiggins. The three different marker pellets (spheres, rings, and ‘B’-formed markers) had a mean (SEM) weight of 30 (1) mg.

BREATHE HYDROGEN TESTS
All subjects were studied in the morning at the

Medizinische Klinik I, Albertus-Magnus-Universität, Köln W Kruis
Medizinische Klinik II, Klinikum Grosshadern, Ludwig-Maximilians-Universität, München, FRG G Forstmaier C Scheurlen F Stellaard
Correspondence to: Dr Wolfgang Kruis, Medizinische Universitäts-Klinik 1, Joseph-Stelzmann-Str 9, D-5000 Koeln 41, Federal Republic of Germany.
Accepted for publication 14 May 1990
same time after a 12 hour overnight fast; 20 g lactulose in 300 ml water was given by mouth. End-expiratory hydrogen concentrations were measured using a \(\text{H}_2 \) sensitive electrode (GMI-monitor, Scotland). Breath samples were collected at 5 minute intervals by the single breath technique for at least 120 minutes. Mouth-to-caecum transit was defined by the first rise of breath hydrogen above two standard deviations of baseline fluctuations. Fasting and maximum \(\text{H}_2 \) production were recorded and \(\text{H}_2 \) production quantified by calculating the area under the curve over two hours. For no apparent reason one subject did not respond to lactulose when she was on a high sugar diet.

DETERMINATION OF FAECAL BILE ACIDS

Stool samples were vacuum dried at 120°C and weighed (stool dry weight). The difference between wet and dry weight was defined as the stool water content. Further steps in stool preparation (50 mg) included heating with alkaline methanol (80°C), centrifugation, extraction of bile acids with Bond Elute C18 cartridges, methylation, and silylation. Analysis of the bile acid methylester trimethylsilane ether derivatives was performed by capillary gas chromatography on a 25 m×0.32 mm CP Sil 19 CB column (Chrompack, Middelburg, The Netherlands). Analysis conditions have been described previously. Content, and in faecal pH on the different diets. Faecal wet weight was 66 (29-93) g/24 h v 44 (22-161) g/24 h (low sugar diet v high sugar diet), faecal dry weight was 26 (12-37) g/24 h v 15 (9-65) g/24 h, faecal water content was 66 (42-72) % v 60 (42-73) %, and faecal pH was 6-90 (6-40-7-05) v 6-90 (6-25-7-55).

DETERMINATION OF SERUM BILE ACIDS

Individual conjugated and unconjugated fasting serum bile acids were analysed quantitatively using recently described methods applying group separation of conjugated and unconjugated bile acids on DEAP-LH-20 anion exchange columns and capillary gas chromatography. The mean transit time increased significantly (\(p<0.05 \)) from 55 (42-72) h in the low sugar period to 63 (53-72) h during the high sugar period (Fig 1). Transit time from mouth to caecum (Fig 2) as measured by the breath hydrogen test was 27 (15-70) min on the low sugar diet and 15 (3-65) min on the high sugar diet (\(p<0.01 \)). Bacterial hydrogen production was increased (\(p<0.05 \)) on the high sugar diet as assessed by the calculation of the area under the curve (Fig 3, Table II). Neither maximum end-expiratory hydrogen concentration nor fasting breath hydrogen concentration was influenced by the different diets (Table II).

STATISTICS

Results are given as median (range). Differences were assessed by the Wilcoxon matched pairs signed ranks test. A \(p \) value of <0.05 was considered significant.

Results

GENERAL FAECAL CHARACTERISTICS

No significant differences were observed in faecal wet and dry weight, in faecal water content, and in faecal pH on the different diets. Faecal wet weight was 66 (29-93) g/24 h v 44 (22-161) g/24 h (low sugar diet v high sugar diet), faecal dry weight was 26 (12-37) g/24 h v 15 (9-65) g/24 h, faecal water content was 66 (42-72) % v 60 (42-73) %, and faecal pH was 6-90 (6-40-7-05) v 6-90 (6-25-7-55).

DETERMINATION OF SERUM BILE ACIDS

Individual conjugated and unconjugated fasting serum bile acids were analysed quantitatively using recently described methods applying group separation of conjugated and unconjugated bile acids on DEAP-LH-20 anion exchange columns and capillary gas chromatography. The mean transit time increased significantly (\(p<0.05 \)) from 55 (42-72) h in the low sugar period to 63 (53-72) h during the high sugar period (Fig 1). Transit time from mouth to caecum (Fig 2) as measured by the breath hydrogen test was 27 (15-70) min on the low sugar diet and 15 (3-65) min on the high sugar diet (\(p<0.01 \)). Bacterial hydrogen production was increased (\(p<0.05 \)) on the high sugar diet as assessed by the calculation of the area under the curve (Fig 3, Table II). Neither maximum end-expiratory hydrogen concentration nor fasting breath hydrogen concentration was influenced by the different diets (Table II).

STATISTICS

Results are given as median (range). Differences were assessed by the Wilcoxon matched pairs signed ranks test. A \(p \) value of <0.05 was considered significant.

Results

GENERAL FAECAL CHARACTERISTICS

No significant differences were observed in faecal wet and dry weight, in faecal water content, and in faecal pH on the different diets. Faecal wet weight was 66 (29-93) g/24 h v 44 (22-161) g/24 h (low sugar diet v high sugar diet), faecal dry weight was 26 (12-37) g/24 h v 15 (9-65) g/24 h, faecal water content was 66 (42-72) % v 60 (42-73) %, and faecal pH was 6-90 (6-40-7-05) v 6-90 (6-25-7-55).

INTESTINAL TRANSIT AND HYDROGEN BREATH TESTS

The mean transit time increased significantly (\(p<0.05 \)) from 55 (42-72) h in the low sugar period to 63 (53-72) h during the high sugar period (Fig 1). Transit time from mouth to caecum (Fig 2) as measured by the breath hydrogen test was 27 (15-70) min on the low sugar diet and 15 (3-65) min on the high sugar diet (\(p<0.01 \)). Bacterial hydrogen production was increased (\(p<0.05 \)) on the high sugar diet as assessed by the calculation of the area under the curve (Fig 3, Table II). Neither maximum end-expiratory hydrogen concentration nor fasting breath hydrogen concentration was influenced by the different diets (Table II).

FAECAL BILE ACIDS

Total bile acid excretion was similar on the low (132 (99-279) mg/24 h) and high sugar diets (122 (60-470) mg/24 h). But faecal total bile acid concentration expressed as mg bile acids per g stool dry weight increased significantly (\(p<0.05 \))

Table I

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>38 g</td>
</tr>
<tr>
<td>Total fat</td>
<td>34 g</td>
</tr>
<tr>
<td>Essential fatty acids</td>
<td>10 g</td>
</tr>
<tr>
<td>Total carbohydrates</td>
<td>138 g</td>
</tr>
<tr>
<td>Sucrose</td>
<td>30 g</td>
</tr>
<tr>
<td>Fibre (soluble/insoluble= 1/3; cellulose 45%, hemicellulose 35%, lignin 10%, pectin 10%)</td>
<td>20 g</td>
</tr>
<tr>
<td>Energy</td>
<td>0-418 MJ</td>
</tr>
<tr>
<td>Osmolarity</td>
<td>35 mOsmol/l</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orocaecal transit time (min)</td>
<td>27 (15-70)</td>
<td>p<0.01 15 (3-65)</td>
</tr>
<tr>
<td>Fasting H(_2) concentration (ppm)</td>
<td>10 (4-30)</td>
<td>8 (4-20)</td>
</tr>
<tr>
<td>Maximum H(_2) concentration (ppm)</td>
<td>156 (30-300)</td>
<td>150 (90-355)</td>
</tr>
<tr>
<td>Area under the H(_2) exhalation curve (ppm·h)</td>
<td>114 (36-298)</td>
<td>p<0.05 123 (22-405)</td>
</tr>
</tbody>
</table>
Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation

from 6.4 (4.0–10.1) mg/g on the low sugar diet to 7.2 (4.9–10.8) mg/g on the high sugar diet. This increase was due to a significant (p<0.05) change of faecal lithocholic acid from 2.6 (1.5–3.7) mg/g to 3.2 (1.2–6.3) mg/g. Faecal deoxycholic acid was 3.3 (2.0–5.4) mg/g v 3.6 (2.7–4.3) mg/g. As Figure 4 shows there was a significant (p<0.05) increase in the faecal content of secondary bile acids from 6.0 (3.5–8.9) mg/g to 6.6 (4.2–10.7) mg/g. The faecal content of primary bile acids did not change significantly: cholic acid 0.05 (0.05–0.44) mg/g v 0.05 (0.05–0.65) mg/g; chenodeoxycholic acid 0.47 (0.17–0.59) mg/g v 0.35 (0.05–0.91) mg/g. The faecal content of ursodeoxycholic acid (0.05 (0.05–0.4) mg/g v 0.05 (0.05–0.17) mg/g) remained unchanged.

SERUM BILE ACIDS
The serum concentration of conjugated cholic acid dropped significantly (p<0.05) during the high sugar period. Otherwise the serum concentrations of total, conjugated, and unconjugated bile acids were not influenced by the change in diet. The data are summarised in Table III.

TABLE III Serum bile acid concentration in nine healthy subjects on diets low and high in refined sugar (median and range)

<table>
<thead>
<tr>
<th>Refined sugar intake (μmol/l)</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bile acids:</td>
<td>2.11 (0.55–2.51)</td>
<td>1.40 (0.80–2.94)</td>
</tr>
<tr>
<td>Cholic acid</td>
<td>0.13 (0.04–0.45)</td>
<td>0.09 (0.04–0.22)</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td>0.44 (0.04–0.90)</td>
<td>0.45 (0.17–0.80)</td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>0.49 (0.30–0.79)</td>
<td>0.37 (0.13–1.20)</td>
</tr>
<tr>
<td>Conjugated total bile acids:</td>
<td>0.96 (0.45–1.34)</td>
<td>0.75 (0.46–1.26)</td>
</tr>
<tr>
<td>Cholic acid</td>
<td>0.10 (0.02–0.19)</td>
<td>0.02 (0.02–0.08)</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td>0.28 (0.02–0.50)</td>
<td>0.26 (0.15–0.45)</td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>0.28 (0.16–0.42)</td>
<td>0.25 (0.11–0.48)</td>
</tr>
<tr>
<td>Unconjugated total bile acids</td>
<td>0.91 (0.10–1.65)</td>
<td>0.60 (0.10–1.93)</td>
</tr>
<tr>
<td>Cholic acid</td>
<td>0.02 (0.02–0.28)</td>
<td>0.02 (0.02–0.20)</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td>0.16 (0.02–0.54)</td>
<td>0.17 (0.02–0.46)</td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>0.18 (0.02–0.58)</td>
<td>0.23 (0.02–0.79)</td>
</tr>
</tbody>
</table>

*p<0.05.

Discussion
When studying the physiological effects of a single nutrient it is essential that the rest of the diet is kept constant and that experimental periods are long enough to allow for steady state conditions. It is also desirable that the composition of the diet resembles that of the subject’s normal diet. We used a formula diet produced according to the suggestions of the DGE (German Association of Nutrition)30 for the nutrition of adults. The fibre content of this formula diet is 20 g/2000 ml, reflecting the average daily fibre consumption in industrialised countries.31 In our study the different diet periods lasted for 14 days, which has been found32 to result in steady state conditions for faecal excretion of sterols and bile acids. Feeding chemically defined diets led to microbiological steady state conditions after 13 days,32 which could be shortened to four days by giving laxatives between the different diet periods.14 The control diet included 60 g/day of refined sugar, which is similar to the average sugar intake world wide,3 while the high sugar diet comprised 165 g/day, as in some Western countries.7

Transit through the whole gut slowed down on the high sugar diet. This change may have been
Bacterial conversion from primary to secondary bile acids depends on the transit time. Thus the lengthened whole gut transit time on the high sugar diet may also favour an increase of secondary bile acids. The raised faecal secondary bile acid concentration was not accompanied by a decrease in primary bile acids, but it was associated with significantly higher faecal concentration of total bile acids on the high sugar diet. In previous studies pool sizes tended to enlarge on a diet with refined sugar. Bile acids that are deconjugated in the upper small bowel by gut bacteria can easily pass into the portal blood and therefore be recognised in the systemic circulation. Indeed, raised unconjugated serum bile acids have been described in patients with intestinal bacterial overgrowth. We observed no changes in the serum concentration of unconjugated bile acids, which further supports the breath hydrogen findings of a bacterial growth of the small bowel not affected by the intake of refined sugar.

This study shows significant changes of gut transit, of fermentative colonic bacterial activity, and of intestinal bile acids in healthy subjects fed a diet high in refined sugar. Whether those alterations have a patho-physiological role is not yet clear but has been suggested in epidemiological studies.

![Graph showing faecal secondary bile acid concentration in nine healthy subjects taking diets low and high in refined sugar.](image)

Figure 4: Faecal secondary bile acid concentration in nine healthy subjects taking diets low and high in refined sugar.

influenced by the fibre content of the diets. In fact there are conflicting results on the effect of fibre ingestion on gastrointestinal transit, either causing acceleration or showing no effects. In our study during the high sugar period fibre content was diminished by 5 g/day; this amount of fibre has not yet been proved to alter bowel transit. The weight and water content of the stools were not significantly different during the two diet periods. Thus the prolongation of whole gut transit time was probably caused by the high sugar intake, though the mechanism is obscure.

In contrast to transit through the whole gut, mouth-to-caecum transit, calculated from the increments in breath hydrogen, was accelerated. Increased hydrogen production is due to bacterial fermentation of lactulose in the caecum. In cases with bacterial overgrowth, however, it may also be caused by fermentation in the upper gut. An early peak of breath hydrogen followed by a prolonged increase in hydrogen corresponding to the passage of lactulose into the caecum is characteristic for bacterial growth of the proximal small bowel. We did not observe this pattern of hydrogen exhalation and, in addition, fasting breath hydrogen concentration, another marker of bacterial growth of the intestine, was not raised. Analysis of the area under the breath hydrogen curve showed an increase on the high sugar diet, indicating altered colonic bacterial fermentation. Thus breath hydrogen testing in subjects on a high sugar diet showed faster small bowel transit and raised fermentative bacterial activity in the colon.

One of the many enzymatic actions of intestinal bacteria is 7-α-dehydroxylation of primary to secondary bile acids. Altered bowel flora may lead to an increase of faecal secondary bile acids, as we observed on the high sugar diet.

Parts of this work have been published in an abstract (Gastroenterology 1987; 92: 1483). The study was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG: Re 770/2-1). The diets were kindly gifted by Fresenius AG, Oberursel, FRG. We thank Ms K. Amorg for skilful preparation of the manuscript.
Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation

Müller-Lissner SA. Healthy controls have as much bile reflux as gastric ulcer patients. Gut 1987; 28: 1577-83.

Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation.

W Kruis, G Forstmaier, C Scheurlen and F Stellaard

doi: 10.1136/gut.32.4.367