Clostridium difficile toxin A induces a specific antisecretory factor which protects against intestinal mucosal damage

J Torres, E Jennische, S Lange, I Lönnroth

Abstract
Peroral challenge with toxin A from Clostridium difficile induced the formation of antisecretory factor in rats. The animals were given 100 µg of the toxin, which was followed by a pronounced diarrhoea and by the appearance of antisecretory factor in the pituitary gland. In electrofocusing, the induced antisecretory factor separated in two peaks (pI 5-4 and 5-0); both fractions showed a lectin-like binding to agarose. The pI 5-4 fraction inhibited cholera toxin as well as toxin A induced fluid secretion, while pI 5-0 inhibited toxin A induced secretion only. Immunohistochemistry showed that an antisecretory factor of pI 5-0 protected the mucosa from the cytotoxic effect of toxin A, but did not affect the binding of toxin A to the intestinal epithelium. Sodium dodecyl-sulphate-polyacrylamide gel electrophoresis of the pI 5-0 protein showed two major fractions to be present, one of molecular weight 60 kDa, the other of 30 kDa, the latter probably being a degradation product of the former.

Clostridium difficile is commonly the agent responsible for antibiotic associated diarrhoea, colitis, and pseudomembranous colitis in humans. The antibiotic depresses the bacterial flora which normally counteract extended colonisation by C difficile in the gut. The pathogenic effects of C difficile are probably mediated by exotoxins, the two most important being toxin A and toxin B. Toxin A is an enterotoxin, responsible for haemorrhagic fluid accumulation in intestinal loops of rats, rabbits, and hamsters. Toxin A also causes elongation of ovary cells in Chinese hamsters, an effect similar to that of enterotoxins from Vibrio cholerae, Escherichia coli, and Campylobacter jejuni. Toxin B induces intestinal secretion without any apparent damage to the intestinal mucosa.

Colonisation with C difficile toxigenic strains during treatment with antibiotics might occur, however, without any clinical sign of intestinal disease. Intestinal resistance to this pathological challenge is probably mediated by a variety of defence mechanisms, including those triggered by immunocomponent cells. Recently, a new protein was reported which counteracts the in vivo secretory action of the enterotoxins from V cholerae, E coli, and C jejuni. This protein was designated antisecretory factor, owing to its capacity to inhibit intestinal fluid secretion. It is mainly synthesised in the central nervous system and is secreted from the pituitary gland into the blood, milk, and bile. In young animals there is normally no production of antisecretory factor, but after intestinal challenge with enterotoxin production is induced in the central nervous system. Antisecretory factor from pigs consists of one peptide chain with a molecular mass of 60 kDa. It attaches with high affinity to galactose-containing polysaccharides such as agaroce, but is dissociated again by elution with galactose or methyl α-D-glucoside.

In contrast to the enterotoxins from V cholerae and E coli, toxin A from C difficile causes intestinal hypersecretion in combination with extensive destruction of the mucosa. It was therefore important to investigate whether this toxin induced a similar formation of antisecretory factor as that induced after hypersecretion caused by the non-tissue damaging enterotoxins.

Methods
TOXIN A
C difficile strain CCUG 19126 (VPI 10463, obtained from D M Lyerly/T D Wilkins, VPI Blacksburg, USA) was used for production of toxin A. The toxin was produced and purified to homogeneity as previously described. Rabbit antiserum against toxin A was obtained as previously described, and the IgG fraction isolated according to Steinbuch and Audren.

PERORAL CHALLENGE
Sprague-Dawley rats, 2–3 months old, were used for induction of the antisecretory activity. Under ether anaesthesia animals were challenged perorally via a baby feeding tube with 100 µg of toxin A in 3 ml of a 6% bicarbonate solution. After some eight hours all animals had pronounced diarrhoea (wet tail). After 16 hours the rats were sacrificed and their pituitary glands removed.

EXTRACTION AND PURIFICATION OF ANTISECRETORY FACTOR
Fifteen rats were challenged perorally with toxin A for induction of antisecretory factor. After 16 hours the pituitary glands were removed and immediately placed in ice cold 145 mM NaCl, 50 Mm NaHPO4, 0-1% Na2S2O3, pH 7-2 (phosphate buffered saline with sodium thiosulphate, PBST), homogenised with a loose fitting glass homogeniser, and centrifuged at 27 000 g for 10 minutes. The clear supernatant was run in a preparative isoelectrofocusing column with a linear sucrose gradient. Ampholine (LKB), pH 3-5–10 or 4-6, was used as the carrier electrolyte; the anode solution was 0-1 M glutamic acid, 0-5 M phosphoric acid and the cathode solution...
was 0.01 M β-alanine, 0.5 M ethanolamine. Fractions were assayed for pH and dialysed against PBST for 48 hours and then tested for antisecretory activity. The samples with antisecretory activity were applied to a 5 ml Sepharose 6B (Pharmacia) column to separate them according to their affinity to agarose. The column was washed with PBST and then eluted stepwise with 0.1 M, 0.3 M, 0.9 M, and 1.5 M methyl-α-D-glucoside (Sigma) in PBST. The eluates were dialysed against PBST before measuring the antisecretory activity.

Polyacrylamide Electrophoresis

Fractions with antisecretory activity were concentrated to a final 50 μl volume in a minicon B15 concentrator (Amicon). Concentrated samples were analysed in precast gradient gel electrophoresis, run in the presence of sodium dodecylsulphate in accordance with the manufacturer's instructions (Pharmacia). Electrophoresis was performed in a 2–16% gradient gel in 0.04 M Tris, 0.02 M sodium acetate, 0.002 M ethylenediamine tetra-acetate, 0.2% sodium dodecylsulphate, 0.1% sodium thioulsulphate, pH 7.4. The test and reference proteins were incubated in 1.75% sodium dodecylsulphate, 0.3% glycerol, and 0.1 M NaH₂PO₄, pH 7.0, at 53°C for 15 minutes. The test sample was applied to four adjacent wells. After electrophoresis reference proteins were stained with 1% Coomassie brilliant blue. The portion of the gel with the four samples of antisecretory factor was cut in 0.5–1.5 cm pieces, from which the proteins were eluted by dialysis against PBST for three days. After dialysis each fraction was tested for antisecretory activity.

Antisecretory Activity

The different fractions were tested for antisecretory activity in rats. Toxin A 0.5 and 1.5 μg or cholera toxin 1 and 3 μg were injected into two adjacent 15 cm ligated intestinal loops with a total volume of 1 ml each. The test sample or buffer control at a final volume of 2 ml was injected via the penis vein one minute before toxin A challenge. Each recipient rat received a fraction of a sample equivalent to the total amount obtained from one donor (the content of one pituitary gland). After six hours the fluid secretion of the test loop (mg/cm) was estimated by subtracting the weight and length of the control loop from that of the test loop. One ED₅₀ of the antisecretory activity was defined as the dose causing 50% inhibition of the fluid secretion compared with untreated control animals. Antiserum against purified antisecretory factor from pig pituitary gland was tested for its capacity to neutralise the various preparations of antisecretory factor from rat. The antiserum was added to the samples in the proportion 1:20. After incubation for 30 minutes at 23°C the solution was tested for antisecretory activity.

Morphology

Mucosal structure

Samples with antisecretory activity eluted after isoelectric focusing were pooled to study their effect on the intestinal mucosal damage caused by toxin A. They were administered intravenously one minute before the injection of 1.5 μg of toxin A into the ligated loops. After one, four, and six hours the rats were fixed in vivo (under ether anaesthesia) by transcardial perfusion with 40–60 ml ice cold 4% paraformaldehyde in phosphate buffered saline. The middle portion of the loop was cut into 5 mm pieces which were immediately placed in the same fixative. These were then embedded into methacrylate plastic (Historesin) and 1 μm thick sections prepared using a Histochrome microtome (LKB). The sections were either stained with basic fuchsin/methylene blue/Azur III or with periodic acid-Schiff/haematoxylin using standard procedures.

Binding of toxin A

The effect of antisecretory factor on the binding of toxin A to the intestinal epithelium was studied. Samples of antisecretory factor were administered intravenously before toxin A challenge. One intestinal loop was prepared per animal and injected with 3 μg of toxin A. After one and two hours the rats were perfused in vivo with the 4% paraformaldehyde/phosphate buffered saline fixative; the loop was taken out and cut in 5 mm pieces, which were then placed in the same fixative. After postfixation for three hours the specimens were rinsed overnight in phosphate buffered saline containing 7.5% sucrose, and then frozen in liquid nitrogen.

Table 1

<table>
<thead>
<tr>
<th>ASF fraction</th>
<th>Inhibition of fluid secretion, ED₅₀ after intestinal challenge with toxin A (mg/cm)</th>
<th>Cholera toxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 ± 4</td>
<td>1/1</td>
<td>0/8</td>
</tr>
<tr>
<td>5.1 ± 4 + anti-ASF</td>
<td><0/1</td>
<td></td>
</tr>
<tr>
<td>5.1 ± 0</td>
<td>1/6</td>
<td><0/1</td>
</tr>
<tr>
<td>5.1 ± 0 + anti-ASF</td>
<td>1/1</td>
<td></td>
</tr>
</tbody>
</table>

*The values represent the mean of the response in two rats. Two loops were prepared from each animal and challenged with either 0.5 and 1.5 μg of toxin A or 1 and 3 μg of cholera toxin. ASF was inoculated intravenously as described in the text. For calculation of ED₅₀ see Methods.
Clostridium difficile induces a specific antisecretory factor which protects against intestinal mucosal damage

<table>
<thead>
<tr>
<th>Table II</th>
<th>Elution of antisecretory factor (ASF) from agarose gel with methyl α-D-glucoside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elution with methyl α-D-glucoside (mM)</td>
<td>Inhibition of toxin A induced fluid secretion, ED₅₀*</td>
</tr>
<tr>
<td>0-0</td>
<td><0-1</td>
</tr>
<tr>
<td>0-1</td>
<td>0-5</td>
</tr>
<tr>
<td>0-9</td>
<td>1-1</td>
</tr>
<tr>
<td>1-5</td>
<td>1-0</td>
</tr>
</tbody>
</table>

*The values represent the mean of the response in two rats. Two loops were prepared in each animal and challenged with 0.5 and 1.5 μg of toxin A. For calculation of ED₅₀, see Methods.

Cryostat sections (6 μm) were prepared and incubated for 12 hours with antibodies against toxin A at 4°C, followed by the secondary antibodies (anti-rabbit Ig, peroxidase-linked species specific F(ab')₂ fragment from donkey, Amersham, UK) for two hours at room temperature. Bound horseradish peroxidase was visualised by the 3,3-diaminobenzidine reaction. Control sections were incubated without the primary antibodies or with antibodies preabsorbed with an excess of toxin A.

Results

INDUCTION OF ANTISECRETORY FACTOR

Peroral administration of 100 μg of toxin A caused a pronounced diarrhoea (wet tail) in the rat 8–10 hours after challenge. The diarrhoea decreased after 16 hours, abundant antisecretory factor activity then being found in the pituitary gland. The extracted antisecretory factor from one such gland inhibited 93 (10%) (mean (SEM)) of the secretion induced by toxin A, corresponding to a dose of 18 ED₅₀.

PURIFICATION AND CHARACTERISATION OF ANTISECRETORY FACTOR

The antisecretory factor activity present in the pituitary gland was purified and characterised. Preliminary electrofocusing using ampholine pH 3.5–10 showed that the activity focused between pH 5.0 and 6.0. Ampholine pH 4.6 was then used for better resolution. In this gradient the activity focused in two peaks, one corresponding to pl 5.0 and the other to pl 5.4 (Fig 1). The fraction pl 5.4 inhibited toxin A and cholera toxin-induced secretion, while the fraction pl 5.0 counteracted secretion induced by toxin A but not that induced by cholera toxin (Table I). Antiserum against porcine antisecretory factor abolished the activity of fraction pl 5.4, but not that of fraction pl 5.0 (Table I). Both fractions attached to agarose gel with high affinity and dissociated again in a gradient of methyl α-D-glucoside. Antisecretory factor of pl 5.0, however, dissociated with a 0.1 M concentration of the sugar, while that of pl 5.4 mainly dissociated at a concentration of 0.9–1.5 M (Table II).

The pl 5.0 fraction (specific for toxin A) was further characterised. It was run in sodium dodecylsulphate-polyacrylamide gel electrophoresis to estimate its molecular size. The antisecretory activity migrated in two peaks, the main peak corresponding to an approximate molecular size of 60 kDa and the minor peak to about 30 kDa compared with the migration of the protein markers (Fig 2).

MORPHOLOGY

Immunohistochemistry was used to study binding of toxin A to the mucosa of the small intestine in loops challenged with toxin for 60 minutes. In control animals not treated with antisecretory factor, binding of toxin A could be shown in the microvilli region of enterocytes on the villi (Fig 3A). No binding of the toxin to epithelial cells in the crypts was evident. Treatment of the animals with antisecretory factor did not affect the binding of the toxin to the mucosa, since a binding pattern similar to the control was seen (Fig 3B). Six hours after injection of toxin A extensive damage to the mucosa was seen in control animals (Fig 3C). In contrast, in rats treated with antisecretory factor the mucosa was well protected from the destructive effects of toxin A (Fig 3D). In these protected animals some shedding of epithelial cells from the upper parts of the villi was observed, but otherwise the morphology was fairly well preserved. There was no evidence of haemorrhage in the intestinal wall.

Discussion

The formation of antisecretory factor in rats after a challenge with cholera toxin has been clearly shown. The results from previous studies implied that antisecretory factor was released as a response to the hypersecretion rather than as a response to the causative toxin. In contrast to these non-tissue damaging enterotoxins, toxin A from C difficile induces two kinds of antisecretory factor in the pituitary gland of rats, one of pl 5.4 and one of pl 5.0.

Antisecretory factor with a pl of 5.4 inhibited fluid secretion in the small intestine, both that induced by cholera toxin and that induced by

Figure 2: Estimation of the molecular size of the toxin A induced pl 5.0 antisecretory protein. The pl 5.0 antisecretory factor was run in 2-10% polyacrylamide gel electrophoresis gradient gel. The track with the reference proteins was stained, whereas the tracks with samples were sliced and the protein eluted by dialysis. Dialysates were then tested for inhibition of toxin A induced secretion in small intestinal loops. The activity migrated at two positions corresponding to a size of 60 kDa and 28 kDa respectively.
factor protein and toxin A and agrees with earlier results concerning binding of cholera toxin and its inducible antiserotory factor.11,12 None the less, antiserotory factor might have affected the binding function by modifying the receptor or its mobility in the membrane.

Toxin A induced antiserotory factor, both of pI 5·0 and of 5·4, bound spontaneously to agarose and was dissociated again in a gradient of methyl-α-D-glucoside. This lectin-like binding also occurs in antiserotory factor proteins induced by hyperosmotic solutions of sugars or amino acids.13,14 These proteins are also similar in their intestinal effect and molecular weight but differ both in isoelectric point and in their reactions with antibodies. Furthermore, agarose bound antiserotory factor proteins vary in their dissociation constant when a gradient of methyl-α-D-glucoside is applied. The differences in dissociation constant might reflect a variation in specificity in receptor binding as well as differences in specificity in their interference with enterotoxic activities.

In sodium dodecylsulphate-polyacrylamide gel electrophoresis, the pI 5·0 factor migrated in two peaks, one representing a molecular weight of about 60 kDa, the other of 30 kDa. Similar results were previously achieved in experiments with porcine antiserotory factor, where we concluded that the 30 kDa protein is a degradation product.15 The pI 5·0 protein probably consists of one peptide chain of molecular weight of 50 kDa which is degraded by proteolytic enzymes into smaller peptides during tissue homogenisation and purification procedures.

Immunity to C difficile disease through vaccines has proved difficult to induce.16,17 The newly discovered antiserotory factor proteins seem to be a promising alternative for the control of diarrhoeal diseases. Moreover, the present results suggest that these proteins have a potential capacity to control toxin induced tissue damaging intestinal disorders.

Financial support was provided by the Swedish Medical Research Council (grant No 7481), the Torsten and Ragnar Soderberg Foundation, the Tore Nilsson Foundation, the Magnus Bergrall Foundation, and the Faculty of Medicine, Gothenburn University.

11 Torres J, Jennische E, Lange S, Lonnroth I. Enterotoxins

Financial support was provided by the Swedish Medical Research Council (grant No 7481), the Torsten and Ragnar Soderberg Foundation, the Tore Nilsson Foundation, the Magnus Bergrall Foundation, and the Faculty of Medicine, Gothenburn University.

Figure 3: (A, B) Cryostat sections from small intestinal loops exposed to toxin A for one hour and showing toxin A immunoreactivity, visualised by a horseradish peroxidase-comjugated secondary antibody. (A) Control animal; (B) animal pretreated with antiserotory factor. Binding of toxin A is evident in the microvillus region of villus enterocytes (arrow). (Original magnification ×350.) (C, D) Plastic sections showing the morphology of loops exposed to toxin A for six hours. (C) Control animal; (D) animal pretreated with antiserotory factor. (Arrow indicates shed epithelial cells. In the control animal there is extensive damage to the mucosa. (Original magnification ×100.)
Clostridium difficile toxin A induces a specific antisecretory factor which protects against intestinal mucosal damage

18 Torres JF, Lönnroth I. Production, purification and characterization of Clostridium difficile toxic proteins different from toxin A and from toxin B. Biochim Biophys Acta 1989; 998: 152–7.

Clostridium difficile toxin A induces a specific antisecretory factor which protects against intestinal mucosal damage.

J Torres, E Jennische, S Lange and I Lönnroth

Gut 1991 32: 791-795
doi: 10.1136/gut.32.7.791