Tests of renal function in patients with quiescent colitis: effects of drug treatment

S A Riley, D R Lloyd, V Mani

Abstract
Mesalazine has structural similarities to aspirin and phenacetin and is nephrotoxic when given intravenously in high doses to rats. A number of cases of nephrotoxicity has been reported recently in patients taking oral mesalazine. Sensitive indicators of renal function in a group of patients maintained on long term, delayed release mesalazine and a comparable group on sulphasalazine have been studied. Sixty two patients (32 men, aged 28–82 years) with quiescent colitis were studied. Thirty four had been maintained on delayed release mesalazine 1·6 (0·8–2·4) g/day for 2·9 (0·5–6·9) years and 28 on sulphasalazine 2 (2–3) g/day. Groups were comparable for age, sex, disease duration, and disease extent. Renal function was assessed: by urine microscopy; creatinine clearance; the urinary excretion of two markers of glomerular toxicity, albumin and transferrin; and the urinary excretion for two markers of tubular toxicity, N-acetyl-β-D-glucosaminidase (NAG) and α₁-microglobulin. There were no significant differences in renal function between the two treatment groups. Furthermore, no correlations were found between measures of renal function and either cumulative mesalazine dose or mesalazine treatment duration. In this study, long term maintenance treatment with delayed release mesalazine was no more nephrotoxic than continued treatment with sulphasalazine.

Methods

PATIENT SELECTION AND ASSESSMENT
Patients were selected from a computerised database of 222 patients with chronic ulcerative colitis attending Leigh Infirmary. Of these, 44 had been taking delayed release mesalazine as the sole maintenance treatment for at least six months. For each patient taking mesalazine a computer matched patient taking sulphasalazine was also selected. All pairs were matched for age (within five years), sex, disease duration (within five years), and disease extent.

Patients were invited to participate by letter and those who consented attended for outpatient review. Patients with symptoms of active colitis in the four weeks before attendance and those with a history of diabetes, hypertension, renal disease, or chronic analgesic ingestion were excluded. A detailed drug history was taken to confirm the type, dose, and duration of maintenance medication.

At the time of clinic attendance patients were asked to provide a freshly voided sample of urine for microscopy and to return with a timed urine collection for measurement of: (i) creatinine clearance; (ii) two markers of glomerular toxicity, albumin and transferrin excretion; and (iii) two markers of tubular toxicity, α₁ microglobulin and N-acetyl-β-D-glucosaminidase (NAG) excretion.

To overcome the problems of collecting a 24 hour urine specimen, an overnight collection was made. This had the added advantage of controlling for circadian variations in creatinine clearance and minimised the effects of postural fluctuations in urinary protein excretion. Patients were asked to empty their bladder before going to bed, noting the precise time and discarding the urine. Urine passed through the night was saved and on rising the bladder was again emptied, the urine saved, and the exact time noted. Patients were asked to return the collection at 9 am the same morning, at which time a 10 ml blood sample was taken. Aliquots of urine and plasma were stored at −20°C before analysis.

In order to establish appropriate normal values for overnight creatinine clearance and marker excretion, 50 age matched healthy volunteers were studied using an identical protocol.
Tests of renal function in patients with quiescent colitis: effects of drug treatment

ANALYTICAL TECHNIQUES

Plasma and urinary creatinine concentrations were measured using the Jaffe reaction.

Urinary albumin concentrations were measured by immunoturbidimetry. In brief, a 25 μl urine sample was added to 250 μl of rabbit antiserum to human albumin (Dakopatts, DK-2600) in buffer. The change in absorbance at 340 nm was measured between 0.5 and 100 seconds and results were derived from absorbance changes produced by eight standard solutions (American Hospital Supply, UK). The range of the assay was 3 to 180 mg/l and between and within batch coefficients of variation were 5.0 and 2.7% respectively.

Transferrin concentrations were determined by enzyme immunoassay. Microtitre plate wells were coated with 100 μl of anti-human transferrin (Dakopatts) in 0.05 M carbonate bicarbonate buffer (pH 9-6) at a concentration of 10 μg/ml. Plates were incubated for one hour at room temperature and then overnight at 4°C. After emptying and washing each well, 100 μl of sample or standard (diluted 1 in 80 in phosphate buffered saline, pH 7.2, and containing 0.1% Tween and 0.5% bovine serum albumin to prevent non-specific protein binding to the plate) were added and incubated for one hour. After washing, 100 μl of anti-transferrin horseradish peroxidase conjugate in buffer was added at a dilution of 1 in 2000 and incubated for a further 60 minutes. The conjugate buffer contained 0.1% Tween, 0.5% bovine serum albumin, and 1.0% normal rabbit serum to prevent non-specific binding of conjugate to the plate. After washing, 100 μl of substrate (tetrathymethylbenzidine in DMSO (10 mg/ml) diluted 1 in 100 in 0.15 M citrate buffer and containing H2O2 to a final concentration of 1.3 M/l) were added and incubated for a further 15 minutes. Finally, 100 μl of 1.0 M sulphuric acid were added to stop the reaction and the absorbance was read at 450 nm. Concentrations were derived by reference to a standard curve (Behring Diagnostics). The range of the assay was 20 to 4000 μg/l and within and between batch coefficients of variation were 3.4% and 6.1% respectively.

α1-microglobulin concentrations were measured by enzyme immunoassay using an identical methodology to that described for transferrin. The range of the assay was 0.1 to 10.0 mg/l and within and between batch coefficients of variation were 2.4% and 4.9% respectively.

NAG concentrations were determined colorimetrically using a commercially available kit (Boehringer Mannheim). Briefly, a 15 μl urine sample was added to 250 μl of 3-Cresol-sulfophthalaleinyl-N-acetyl-β-D-glucosamide and incubated at 37°C for 11 minutes. The reaction was stopped by the addition of 75 μl of saturated sodium carbonate and the optical density was read at 580 nm (Cobas Bioanalyser, Roche). Results were calculated by reference to a standard curve. The between batch coefficient of variation was less than 3.0%.

STATISTICAL ANALYSIS

All results are expressed as median and range unless otherwise stated. Between treatment comparisons were made using signed rank tests and correlations were sought using Spearman’s rank correlation test.

Results

Of the 88 patients invited to participate, 62 fulfilled the inclusion criteria and agreed to the study. Thirty four patients had been maintained on delayed release mesalazine for a minimum of six months and 28 had been maintained on long term sulphalazine. The two groups were comparable for age, sex, disease duration, and disease extent (Table). Patients treated with mesalazine had taken the drug for 2.9 (0.5–6.9) years at a daily dose of 1.6 (0.8–2.4) mg daily; the total cumulative mesalazine

<table>
<thead>
<tr>
<th>Patient and disease characteristics</th>
<th>Mesalazine (n=34)</th>
<th>Sulphasalazine (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>45 (31–80)</td>
<td>48 (28–82)</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>16:18</td>
<td>16:12</td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>8 (2–27)</td>
<td>9.5 (5–5–21)</td>
</tr>
<tr>
<td>Disease extent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proctitis</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Proctosigmoiditis</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Left sided</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Total colitis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Treatment duration (years):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesalazine</td>
<td>2.9 (0.5–6.9)</td>
<td>Nil</td>
</tr>
<tr>
<td>Sulphasalazine</td>
<td>4.6 (0–24)*</td>
<td>7.0 (1–7–21)</td>
</tr>
<tr>
<td>Treatment dose (g/day):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesalazine</td>
<td>1.6 (0.8–2.4)</td>
<td>Nil</td>
</tr>
<tr>
<td>Sulphasalazine</td>
<td>2 (2–3)*</td>
<td>2 (2–3)</td>
</tr>
</tbody>
</table>

Results are shown as median and range. *Duration and dose of sulphalazine treatment before mesalazine treatment.

Figure 1: Creatinine clearance in patients maintained on mesalazine (5-ASA) and sulphalazine (SSZ) and in a group of healthy volunteers (HV).
Figure 2: Urinary excretion of albumin and transferrin in patients maintained on mesalazine (5-ASA) and sulphasalazine (SSZ). Results are expressed as marker/creatinine concentration ratio. The upper limit of normal (95th centile) is shown by the dotted line.

The results of urinary albumin and transferrin excretion are shown in Figure 2. All results are expressed as maker/creatinine concentration ratios in order to standardise for differences in timing of the urine collection. In the healthy volunteers the albumin/creatinine ratio was 0·60 (0·3–3·3) mg/mmol and the transferrin/creatinine ratio was 17·2 (2·0–161) μg/mmol. (The upper limit of normal for each measure was set at the 95th centile). There were no significant differences between the two treatment groups (albumin/creatinine ratio: mesalazine=0·91 (0·23–4·55) mg/mmol, sulphasalazine=0·84 (0·24–7·95) mg/mmol; transferrin/creatinine ratio: mesalazine=7·4 (1·1–94) μg/mmol, sulphasalazine=17·6 (1·229) μg/mmol) or between the treatment groups and healthy volunteers. Four patients had albumin/creatinine ratios above the 95th centile (two mesalazine, two sulphasalazine) and four patients had mildly raised transferrin/creatinine ratios (one mesalazine, three sulphasalazine). Albumin/creatinine ratios were positively correlated with transferrin/creatinine ratios in both treatment groups (mesalazine r=0·44, p<0·01; sulphasalazine r=0·38, p<0·05) but neither correlated with the duration of mesalazine treatment or cumulative mesalazine dose.

Figure 3 shows the results of α1-microglobulin/creatinine and NAG/creatinine concentration ratios. In healthy volunteers the α1-microglobulin/creatinine and NAG/creatinine ratios were 277 (12–1237) μg/mmol and 240 (1–755) mU/mmol respectively. No significant differences were found between the two treatment groups (α1-microglobulin/creatinine ratio: mesalazine=132 (3–1070) μg/mmol, sulphasalazine=193 (6–2237) μg/mmol; NAG/creatinine ratio: mesalazine=187 (4–1360) mU/mmol, sulphasalazine=202 (64–650) mU/mmol) or between the treatment groups and healthy volunteers. Five patients had raised α1-microglobulin ratios (one mesalazine, four sulphasalazine) and four patients had high NAG ratios (two mesalazine, two sulphasalazine). α1-microglobulin/creatinine ratios correlated with NAG/creatinine ratios in both treatment groups (mesalazine r=0·56, p<0·01; sulphasalazine r=0·64, p<0·01) but neither correlated with the duration of mesalazine treatment or cumulative mesalazine dose.

Discussion

Salicylate nephrotoxicity has been recognised for many years. Acute renal failure is not uncommon after aspirin overdose and large therapeutic doses of acetylsalicylic acid, choline salicylate, and sodium salicylate may cause acute tubular dysfunction. Pathological studies in the rat, however, suggest that tubular necrosis is transient despite continued dosing.

Although aspirin has been implicated in chronic analgesic nephropathy recent studies have cast doubt on this association. Moreover, high dose para-aminosalicylic acid (4-ASA) was, for many years, used in the treatment of tuberculosis yet nephrotic reactions were uncommon. In massive dose, however, 4-ASA may cause haematuria and reduce creatinine clearance, particularly in patients with pre-existing renal disease. Similarly, despite widespread clinical use, evidence for sulphasalazine renal toxicity is scanty. Acute interstitial nephritis and nephrotic syndrome have been reported, but evidence of chronic nephropathy is lacking.
Tests of renal function in patients with quiescent colitis: effects of drug treatment

Studies of the effect of mesalazine on renal function are relatively few. In the rat, very high single doses of intravenous mesalazine cause acute tubular and papillary necrosis.1 High dose oral mesalazine does not seem to be nephrotoxic in rats when given for four weeks but both rats and dogs develop renal papillary necrosis when fed high dose mesalazine for 6 to 12 months.2

After oral administration, mesalazine is extensively acetylated such that N-acetyl-5-ASA is the predominant form found in both plasma and urine.3 5-ASA is therefore of interest, particularly as minor structural changes to the aspirin and phenacetin molecules are known to influence nephrotoxicity.4 Furthermore, the plasma ratio of 5-ASA to N-acetyl-5-ASA varies somewhat in patients maintained on the different mesalazine formulations5 and this has led some to suggest differences in nephrotoxic potential.6 However, there are no data to support this view and studies of the relative nephrotoxicity of 5-ASA and N-acetyl-5-ASA are awaited with interest.

Recently, a number of cases of nephrotoxicity have been reported in patients taking delayed release mesalazine.7-9 Clinical presentation has been with acute nephritis, nephrotic syndrome, or renal failure. When undertaken, renal biopsy has usually shown interstitial nephritis, although minimal change nephropathy has been reported.10 These reactions seem to be independent of dose and a number have occurred in patients previously exhibiting allergic reactions to sulphasalazine. In the only documented case in which rechallenge has been undertaken, low dose rechallenge with both mesalazine and sulphasalazine caused microscopic haematuria suggesting dose independent hypersensitivity to 5-ASA.11

Clinical trials with mesalazine formulations have been more reassuring. In one early study of colitis relapse, two patients treated with mesalazine 2-4 g daily for four weeks developed minor rises in plasma creatinine concentrations.12 More recent studies, however, have not confirmed this finding and in a number of studies, patients in relapse have been treated with doses up to 4-8 g daily without untoward effect.13 Furthermore, a number of maintenance studies have shown no significant change in renal function on standard biochemical screening.14-17 In the only detailed study of tubular function in man, Diener et al17 found no evidence of continuing renal dysfunction in a group of nine patients with Crohn’s disease maintained on mesalazine 1-5 g daily for up to 12 weeks.

In this study we have assessed renal function in a group of patients who have been maintained on delayed release mesalazine from six months to over six years. We have measured the urinary excretion of albumin and transferrin as these are sensitive indicators of early glomerular damage,18 19 and the excretion of NAG and α₁-microglobulin as these are sensitive markers of tubular toxicity.20 NAG has been used extensively to identify and monitor potentially nephrotoxic drugs,1 its excretion increases in a dose dependent manner following the ingestion of aspirin and sodium salicylate21 and high concentrations are found in patients with established analgesic nephropathy.22 Using this battery of sensitive tests we were unable to find evidence that maintenance treatment with mesalazine was any more nephrotoxic than continued treatment with sulphasalazine. This was despite the fact that patients maintained on mesalazine were receiving twice the equivalent dose of 5-ASA as those maintained on sulphasalazine.

Although toxicity marker excretion ratios were unrelated to the type of maintenance drug treatment, a number of patients had marker excretion values above the 95th centile for healthy volunteers raising the possibility of mild glomerular and tubular dysfunction. Whether these values represent the upper extreme of normality or are related to the underlying colonic disease, long term medication, or other factors is not clear. Clinical evidence of renal dysfunction is unusual in patients with ulcerative colitis. Renal stones occur more commonly than in the general population and, rarely, amyloidosis may occur.23 Detailed pathological studies to detect subclinical renal disease have not been undertaken.

In conclusion, there is little doubt that mesalazine may cause nephrotoxic reactions. The available evidence suggests that in humans these are allergic in nature and independent of dose. They may therefore occur after the ingestion of all 5-ASA containing formulations. Within the current therapeutic dose range there is no

![Figure 3: Urinary excretion of α₁-microglobulin (α₁M) and N-acetyl-β-glucosaminidase (NAG) in patients maintained on mesalazine (5-ASA) and sulphasalazine (SSZ). Results are expressed as marker/creatinine concentration ratios. The upper limit of normal (95th centile) is shown by the dotted line.](http://gut.bmj.com/content/doi/10.1136/gut.1351/fig3)
evidence to suggest dose dependent nephrotoxicity and in the present study long term maintenance treatment with delayed release mesalazine was no more nephrotoxic than continued treatment with sulphasalazine.

1 Riley SA, Turnberg LA. Sulphasalazine and the aminosalicylates in the treatment of inflammatory bowel disease.

2 Dissanayake AS, Truelove SC. A controlled therapeutic trial of long-term maintenance treatment of ulcerative colitis with sulphasalazine.

8 Price RG. Urinary enzymes, nephrotoxicity and renal disease.

9 Walton C, Bodansky HJ, Wales JK, Forbes MA, Cooper EH. Tubular dysfunction and microalbuminuria in insulin dependent diabetes.

12 Ginsberg JM, Chang BS, Maltese RA, et al. Use of single-voided urine samples to estimate quantitative proteinuria.

14 Lloyd DR, Hindle EJ, Marples J, Gatt JA. Urinary albumin measurement by immunoturbidimetry.

15 Catty D, Raykundalia C. ELISA and related enzyme immunoassays.

16 Schwab SJ, Christensen RL, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein to creatinine ratios in single urine samples.

18 Lockwood TD, Boumann HB. The use of urinary N-acetyl-p-glucosaminidase in human renal toxicity. II. Elevation of human excretion after aspirin and sodium salicylate.

19 Proctor RA, Kunin CM. Salicylate-induced enzymuria.

23 Brandler L, Kuhlback B, Niemiste M, Riska N. The effect of massive doses of PAS on renal function and electrolyte balance.

24 Chester AC, Diamond LH, Schreiner GE. Hypersensitivity to salicylacetylsalicylate. Renal and hepatic toxic reactions.

27 Diener U, Tuczek H-V, Fincher C, Maier K, Klotz U. Renal function was not impaired by treatment with 5-aminosalicylic acid in rats and man.

28 Büyard KG, Joseph EC, Metcalf R. Mesisalazol: an overview of key preclinical studies.

30 Calder IC, Funder CC, Green CR, Ham KN, Tange JD. Comparative nephrotoxicity of aspirin and phenacetin derivatives.

31 Hayllar J, Biart J. Sulphasalazine in ulcerative colitis: in memoriam?

32 Committee on Safety of Medicines. Nephrotoxicity associated with mesalazine (Ascol).

33 Goodenough D,5- Aminosalicylate.

34 von Mühldorff KE. Nephritis durch 5-Aminosalicylsaure.

35 Riley SA, Mani V, Goodman MJ, Herd ME, Dunt S, Turnberg LA. Comparison of delayed-release 5-aminosalicylic acid (mesalazine) and sulphasalazine in the treatment of mild to moderate ulcerative colitis relapse.

37 Schroeder KW, Tremaine JW, Birturp DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomised study.

40 Rutgeerts P. Mesisalazol is as effective as sulphasalazine in maintaining ulcerative colitis in remission.

S A Riley, D R Lloyd and V Mani

Gut 1992 33: 1348-1352
doi: 10.1136/gut.33.10.1348

Updated information and services can be found at:
http://gut.bmj.com/content/33/10/1348

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/