Ultrastructural binding sites of endomysium antibodies from sera of patients with dermatitis herpetiformis and coeliac disease

S Kárpáti, M Meurer, W Stolz, A Bürgin-Wolff, O Braun-Falco, T Krieg

Abstract
The ultrastructural binding sites of endomysium antibodies, specific serological markers of gluten sensitive enteropathy, were investigated in the rabbit oesophagus using the immunogold technique. Endomysium antibodies from sera of patients with dermatitis herpetiformis and with coeliac disease bound in an identical manner in a non-fibrillar material closely associated with fine collagenous-reticular fibrils and also with similar fibrils connecting smooth muscle cells and elastic tissue in the endomyosial connective tissue. These observations suggest that IgA antibodies in sera from patients with dermatitis herpetiformis and coeliac disease recognise a common antigen in an amorphous component associated with the reticular connective tissue of oesophageal lamina muscularis mucosae and thus confirm the probable identity of IgA class endomysium and jejunal antibodies.

Methods

IMMUNOFLUORESCENCE STUDIES
Serum samples taken from one coeliac and one dermatitis patient positive for endomysium antibodies in a titre 1:320, as well as serum from a patient with malabsorption syndrome without coeliac disease, were studied on rabbit and fetal human jejunum and on monkey and rabbit oesophagus as described previously.

INDIRECT IMMUNOELECTRON MICROSCOPY (IEM)
Since the most characteristic feature of endomysium antibodies is a honeycomb like fluorescence along the lamina muscularis mucosae, we studied this part of the oesophagus, as described previously. Briefly, small pieces of tissue were fixed for two hours at room temperature in 4% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer (0.1 mol/l, pH 7.2) and were cut into 0.5-1 mm strips, rinsed in graded series of 10-20-30% sucrose-NaCl (0.9%) solution, and quick frozen in liquid nitrogen. The samples were then incubated for 48 hours at 4°C with endomysium antibody positive and negative sera diluted 1:20 in phos-

Figure 1: Indirect immunofluorescence: binding of IgA from sera of dermatitis herpetiformis (A) and coeliac (B) patients along the endomysium of oesophageal (A) and intestinal (B) smooth muscle layers. Note the similar honeycomb like fluorescence. (Original magnification: A ×120, B ×180.)
Figure 2: Electron micrographs showing rabbit oesophagus stained by endomysium antibodies from serum of a patient with coeliac disease. Immunogold labelling: note gold deposition in a non-fibrillar component next to (A) fine collagenous-reticulin fibrils in the endomysial connective tissue of lamina muscularis; (B) fine collagenous-reticulin fibrils connecting the basement membranes of neighbouring smooth muscle cells. (Original magnification: A x29 000, inset x 120 000, B x 82 900, inset x 140 000.)

Figure 3: Ultrastructural binding of IgA from dermatitis herpetiformis serum to rabbit oesophageal smooth muscle layer. Note gold particles in amorphous material along fine collagenous-reticulin fibrils (B) and (A) along fibrils adjacent endomysial elastic tissue. (Original magnification A x40 700, inset x 156 000, B x 173 000.)

phate buffered saline (0.01 mol/l, PH: 7.4), with mouse monoclonal antibody to human IgA (Zymed Laboratories, USA) (diluted 1:10 in phospate buffered saline) and with 5 nm gold-conjugated goat antimouse serum (Janssen Life Sciences, Belgium), diluted 1:15 in Tris-HCl buffer (Tris 20 mmol/l, NaN3 20 mmol/l, pH 7.6) at room temperature for two hours. The tissue was postfixed in Karnovsky and 1% OsO4 solutions and embedded in epoxy resin (Epon 812) (Serva, Germany).

Results

IMMUNOFLUORESCENCE STUDIES (FIG 1)
Sera from both dermatitis herpetiformis and coeliac patients produced an identical honeycomb like fluorescence along the endomysium of oesophageal (Fig 1A) and jejunal (Fig 1B) smooth muscle layers in titre of 1:160–1:320. No fluorescence was detected when control serum was studied.

ULTRASTRUCTURAL DETERMINATION OF ENDOMYSIUM ANTIBODY BINDING SITES USING IMMUNOGOLD LABELLING (FIGS 2–4)
Both studies with coeliac serum (Fig 2) and dermatitis herpetiformis serum (Fig 3) resulted in similar staining patterns on rabbit oesophagus. Endomysium antibody binding was detected in the endomysial connective tissue between the smooth muscle bands (Fig 2A) as well as between the smooth muscle cells (Fig 2B). Gold particles...
were deposited in amorphous material adjacent to fine collagenous-reticulin fibres of different diameters (Fig 2, 3B), connecting the basement membranes of neighbouring smooth muscle cells (Fig 2B), or adjacent marginal smooth muscle cells (Fig 3B). Between the smooth muscle cells and in the marginal perimysial connective tissue, elements of elastic tissue were also recognised. In these regions similar fine fibrils were detected between smooth muscle cells and elastic tissue. Here, too, gold particles were seen in a non-fibrillar material adjacent to the fine fibrils (Fig 3A). Control experiments with endomysium antibody negative serum did not show specific gold deposits (Fig 4).

Discussion

Indirect immunoelectron microscopy of rabbit oesophagus using endomysium antibody positive sera from patients with dermatitis herpetiformis and coeliac disease showed identical IgA antibodies binding in an amorphous component adjacent to fine collagenous-reticulin fibrils of the endomysial connective tissue. These fibrils connected neighbouring smooth muscle cells, smooth muscle bands, and elastic tissue and smooth muscle cells.

In previous ultrastructural studies in rabbit jejunum with anti-jejunal antibody positive dermatitis herpetiformis serum, IgA antibodies also recognised amorphous material adjacent to collagenous-reticulin fibres underlying the basement membrane, around capillaries, between smooth muscle cells, and between smooth muscle cells and elastic tissue in jejunal vessel walls. Our recent experiences with anti-jejunal and endomysium antibodies suggest that these antibodies could be identical.

On the basis of ultrastructural staining characteristics, both endomysium and anti-jejunal antibodies are supposed to be an IgA anti-reticulin antibody. In recent absorption studies Hallström could not distinguish IgA class anti-reticulin antibodies. In recent absorption studies from endomysium antibodies reacting with monkey oesophagus.*

The biochemical composition of endomysium, similar to that of reticulin, is not precisely defined, and may correspond to a group of different fibrillar and amorphous components: collagen I and III fibres, elastic tissue, fibronectin, non-collagenous proteins, and proteoglycans. Both endomysium and reticulin are argyrophilic and strongly periodic acid-Schiff reactive, probably because of the high proteoglycan content of the interfibrillar matrix. According to our observations, some of these interfibrillar components may represent the antigen recognised in patients with dermatitis herpetiformis and coeliac disease.

The results of the present immunoelectron microscopic study further corroborate the probable identity of endomysium and jejunal antibodies and show that sera of patients with dermatitis herpetiformis and coeliac disease react with an identical tissue component present in different animal and human tissues.

Supported by the Humboldt Foundation, Bonn, Germany

Ultrastructural binding sites of endomysium antibodies from sera of patients with dermatitis herpetiformis and coeliac disease.

S Kárpáti, M Meurer, W Stolz, A Bürgin-Wolff, O Braun-Falco and T Krieg

Gut 1992 33: 191-193
doi: 10.1136/gut.33.2.191

Updated information and services can be found at:
http://gut.bmj.com/content/33/2/191

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Coeliac disease (537)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/