Do IgA antigliadin and IgA antienodmysium antibodies show there is latent coeliac disease in primary IgA nephropathy?

C Sategna-Guidetti, G Ferfoglia, M Bruno, R Pulitano, D Roccatello, A Amore, R Coppo

Abstract

The finding in primary IgA nephropathy of increased levels of IgA to food antigens and particularly to gliadin prompted the hypothesis that a subgroup of these patients may have latent coeliac disease. The observation that gliadin may experimentally induce IgA mesangial deposits supported this hypothesis. We evaluated specific immunological markers of coeliac disease (antienodmysium antibodies) which parallel histological changes of gluten sensitive enteropathy, and an IgA immunofluorescent test for antigliadin antibodies in 18 patients with IgA nephropathy, in 56 untreated coeliac disease patients, in 254 controls (58 healthy and 196 disease controls). Antiendomysium antibodies were positive in 89-28% of coeliac patients, but negative in all IgA nephropathies and controls. IgA immunofluorescent test for antigliadin antibodies, negative in all IgA nephropathy patients, was positive in 76-78% of coeliac patients and in 4-91% of controls. ELISA IgA antigliadin antibodies were negative in controls, but positive in 22-22% of IgA nephropathy patients and in 60-71% of coeliac patients. Our data would suggest that in most patients with IgA nephropathy there is no evidence of latent coeliac disease.

Primary IgA nephropathy is a renal disease characterised by mesangial deposits containing IgA and fibrinogen, a lesser extent, IgG and C3 which have electrodense features typical of immune complexes. The antigens eliciting the IgA immune response that leads to IgA immune complex mesangial deposition are still unknown. Environmental, infectious, and food antigens could play a role in triggering the increase of IgA and IgA immune complex production. Among others, gliadin has, since the first report, been suggested as the association between coeliac disease and IgA nephropathy. Such an overt association is clinically infrequent and the role of gliadin was reconsidered only after the observation that a gluten free diet could modify some immunological abnormalities in some IgA nephropathy patients by reducing the concentrations of both circulating IgA immune complex and the titre of some dietary antigens. It was also shown that gliadin could experimentally induce IgA glomerulopathy in mice. Jejunal mucosa atrophy compatible with untreated coeliac disease has been rarely seen and intestinal mucosal permeability is not generally increased in IgA nephropathy as it is in coeliac disease.

The question arises, therefore, as to whether IgA nephropathy is associated with a subclinical form of coeliac disease or whether gliadin acts as an antigen, perhaps like other alimentary components, particularly those with lectinic properties.

The aim of this study was to evaluate in the sera of IgA nephropathy patients, the presence of new specific immunological markers of coeliac disease, shown to parallel histopathologic gut changes — that is, IgA class antienodmysium antibodies and an IgA immunofluorescent test for antibodies to gliadin.

Methods

PATIENTS

The sera of 18 adult IgA nephropathy patients was studied whose disease was shown by prevalent IgA mesangial deposits in immunofluorescence on renal biopsy tissue; there were no laboratory or clinical signs of liver, intestinal, skin or systemic involvement.

Serum samples from 56 untreated adults with biopsy proven coeliac disease and from 58 healthy controls and 196 disease controls (Crohn's disease, ulcerative colitis, irritable bowel disease, food allergy, lymphoma, etc.) were also studied. Sera from both patients and controls were stored at -20°C until tested.

IgA class antienodysium antibodies (IgA-EMA) were detected by indirect immunofluorescence, on frozen sections of commercial slides of monkey oesophagus, provided by Biosystems, Italia. Sera were diluted 1:5 in phosphate buffered saline, pH 7-2, and were considered as positive if a thin fluorescent network around the smooth muscle fibres appeared. Immunofluorescent IgA class antibodies to gliadin were appraised on commercial slides of rat kidney (Biosystems, Italia) previously treated with gliadin, which selectively binds to reticulin fibres. Sera, diluted 1:10 in phosphate buffered saline pH 7-2, were considered as positive when originating periglomerular and perilobular fluorescence. Sera obtained from the patients and controls were read blind by three of us, and was 100% for antienodysium antibodies and 97% for antigliadin antibodies.

Serum antigliadin antibodies of IgA and IgG isotypes were also assessed with an enzyme linked immunosorbent assay (ELISA) with microplates coated with wheat gliadin (Sigma) dissolved in carbonate/bicarbonate buffer at pH 9-6, as previously described. Values of absorbance index over mean ± 2 (SD) of controls were considered as the cut-off of positivity — that...
is, 0·200 absorbance index for IgA and 0·300 absorbance index for IgG class.

Results

IMMUNOFLUORESCENCE IgA ANTIEDOMYSIUM ANTIBODIES

Antiedomysium antibodies were found positive in 50 of 56 (89·28%) coeliac disease patients, but negative in all IgA nephropathy and in both healthy and disease controls.

IMMUNOFLUORESCENCE IgA ANTIGLIADIN ANTIBODIES

Positive staining for immunofluorescence IgA antigliadin antibodies was shown in 43 of 56 (76·78%) coeliac disease and in 11 of 241 (4·56%) controls, but in no IgA nephropathy patients. False positives were confined to patients with active small bowel Crohn's disease.

ELISA IgA AND IgG ANTIGLIADIN ANTIBODIES

Higher than cut off limit titres of antigliadin antibodies IgA class were found in 34 of 56 (60·71%) coeliac disease patients, in four of 18 (22·22%) IgA nephropathy, but not in any controls. Antigliadin antibodies IgG titres reported above the cut off limit in 37 of 56 (66·07%) coeliac disease patients, in 34 of 254 (13·38%) controls but in no IgA nephropathy patient.

False positives were found in four (6·89%) healthy controls, and in 30 (15·30%) patients (16 active Crohn's disease, two food allergy, two irritable bowel disease, one lymphoma, five patients with other autoimmune disorders, and in four first degree relatives of coeliac disease patients).

Discussion

The detection of high titres of antigliadin antibodies in the sera of IgA nephropathy patients has drawn the attention of many authors to the possible relationship between IgA nephropathy and coeliac disease. Laurent's group" found a 70% frequency of high antigliadin antibodies titres in 27 IgA nephropathy patients by a single step ELISA and a 100% frequency by a more sensitive two step test.16 High IgA antigliadin antibodies titres were also reported by Nagy et al17 in 54% of 54 IgA nephropathy patients; these patients also showed high levels of other dietary antigens. In contrast, Fornasieri et al18 reported that only four of 121 (3%) of IgA nephropathy patients showed high antigliadin antibodies levels; Rostoker et al18 attributed this discrepancy to a difference in methods. They coated ELISA plates with wheat gliadin in carbonate/bicarbonate buffer, while Fornasieri et al19 coated them in phosphate buffered saline, which allows glutenin but not gliadin extraction. Rodriguez-Soriano et al,20 with the same method used by Laurent's group,21 confirmed Fornasieri's data: no antigliadin antibodies were detected in their patients. In a multicentre study,22 it was recently observed that IgA antigliadin antibodies had different prevalences among Italian, Australian, and Japanese IgA nephropathy patients by using ELISA with bicarbonate and alcohol gliadin extraction. Italian patients had a prevalence of IgA antigliadin antibodies in bicarbonate and ethanol ranging from 19 to 28·5%, Australian from 19 to 23·8% and Japanese from 0 to 16% only.

The contrasting data and the subsequent debate about several possibilities of interpreting antigliadin antibodies results, prompted us to extend our studies by using two new serological methods; the detection of antiedomysium antibodies and antigliadin antibodies by immunofluorescence, which are an improvement over the previous methods.23,24

In our study, using the same method as Laurent et al,17 we detected high IgA antigliadin antibodies values in 22% of IgA nephropathy patients. No patient showed high titres of IgG antigliadin antibodies, that have proved to be more sensitive, albeit less specific,25,26 or positive for antiedomysium antibodies or immunofluorescence-IgA-antigliadin antibodies, whose specificity for gluten sensitive enteropathy is 100%.27,28

False positive antigliadin antibodies have been reported previously, only for the IgG class, in gastrointestinal disorders (such as Crohn's disease, ulcerative colitis, lymphoma, etc) and in autoimmune or bullous diseases,16,26 as in our own experience. On the contrary, IgA class antigliadin antibodies have been considered specific for gluten sensitive enteropathy.27,28 Yet, the discrepancy with immunofluorescence IgA antigliadin antibodies and antiedomysium antibodies suggests that this positivity is not specific for gluten sensitive enteropathy in IgA nephropathy.

Immunofluorescence IgA antigliadin antibodies, which detect specific gluten sensitivity rather than coeliac disease, were negative in all IgA nephropathy patients. As previously reported,14 we also found that false positives accounted for active Crohn's disease with small intestinal involvement, possibly reflecting an increased permeability to food antigens.

As six of our IgA nephropathy patients (three of whom were ELISA IgA antigliadin antibodies positives) previously underwent jejunal biopsy with no histological evidence of coeliac disease,13 and as none showed either antiedomysium antibodies or immunofluorescence antigliadin antibodies positivity, we did not consider it ethical to extend this invasive procedure to the remaining patients. Screening tests for gluten sensitive enteropathy cannot replace biopsy as a definitive diagnostic tool; nonetheless those tests which only occasionally yield a false negative are useful in deciding which person to biopsy when the diagnosis of coeliac disease is involved.
On the other hand, both Fornasieri et al1 who found villous atrophy in two of 141 and Stevens et al2 who, of 31 IgA nephropathy patients all submitted to intestinal biopsy, found subtotalrophy in only one, confirmed the absence of a strong association between gluten sensitive enteropathy and IgA nephropathy.

In conclusion, the absence of IgA antiendomysium antibodies and immunofluorescence IgA antigliadin antibodies in 18 IgA nephropathy patients would show that in most patients with IgA nephropathy no association with latent coeliac disease exists. Gliadin plays a role in IgA nephropathy, perhaps mediated by its lectic properties that favour the binding to cultured mesangial cells.3 This has been shown both by the formation of IgA deposits in mice orally immunised with gliadin and by the decrease of levels of IgA to food antigens and of IgA immune complex in a group of patients with IgA nephropathy. IgA nephropathy does not, however, seem to be a dermatis herpetiformis of the kidney as has been previously suggested.8

This work was supported by a grant of the Ministero dell’Universita’ e della Ricerca scientifica e tecnologica (fondo su quota 60%, anno 1990).

Do IgA antigliadin and IgA antiendomysium antibodies show there is latent coeliac disease in primary IgA nephropathy?
C Sategna-Guidetti, G Ferfoglia, M Bruno, R Pulitano, D Roccatello, A Amore and R Coppo

Gut 1992 33: 476-478
doi: 10.1136/gut.33.4.476

Updated information and services can be found at:
http://gut.bmj.com/content/33/4/476

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Coeliac disease (537)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/