Mucin associated Tn and sialosyl-Tn antigen expression in colorectal polyps

S H Itzkowitz, E J Bloom, T-S Lau, Y S Kim

Abstract
Sialosyl-Tn antigen and its immediate precursor, Tn antigen, are carbohydrate structures associated with the earliest steps of mucin O-linked glycosylation. Both antigens have been shown previously to be highly sensitive and specific markers of colorectal cancer. One hundred and three colorectal polyps (79 adenomatous; 24 hyperplastic) were examined for expression of Tn antigen using vicia villosa isolectin B4, and for sialosyl-Tn antigen by monoclonal antibody TKH2. Tn antigen was expressed by all of the polyps studied. Sialosyl-Tn, on the other hand was expressed weakly by a few cells in 7 of 24 (29%) hyperplastic polyps. Among the adenomatous polyps, 56% expressed sialosyl-Tn and expression correlated with larger adenoma size, greater villous component, and more severe grades of dysplasia. In individuals with two or more synchronous adenomas, the level of sialosyl-Tn expression within an adenoma was associated with the severity of cytological atypia. All the adenomas that contained a focus of invasive carcinoma expressed sialosyl-Tn. These results indicate that colorectal polyps manifest incomplete glycosylation, exposing antigens in the innermost region of mucin oligosaccharides. In addition, the correlation of sialosyl-Tn antigen expression with the adenoma-carcinoma sequence may make this a useful marker for studying malignant progression in the colon.

For years it has been known that mucin elaborated by colon cancers differs qualitatively from that of the normal colon.1,2 However, the potential role of mucin in the biology of the colon cancer cell, and the stage in tumorigenesis at which these alterations occur, are only recently being elucidated. As part of a continuing analysis of mucin-associated carbohydrate antigen expression in colorectal tissues, we have been investigating carbohydrate antigens that represent some of the initial steps in mucin O-linked glycosylation. The first step in mucin oligosaccharide synthesis involves the transfer of GalNAc to serine or threonine residues of the mucin polypeptide, forming the so called Tn antigen (GalNAc-O-ser/thr).3 This structure serves as a precursor for further glycosylation, such that if galactose is added to Tn, the Tantigen (Galβ1, 3GalNAc-O-ser/thr) is formed, whereas if sialic acid is added, this creates the sialosyl-Tn antigen (Siaα2, 6GalNAc-O-ser/thr). In a previous study we reported that each of these three antigens is rarely, if ever, expressed in normal colon, whereas expression occurs in the vast majority of colon cancers.4 In another study that focused on T antigen expression, we observed that 48% of hyperplastic polyps and 54% of adenomatous polyps reacted with monoclonal anti-T' antibody, and in the adenomas, T antigen expression correlated with conventional histopathological parameters of malignant potential.5

With the recent availability of reagents that recognise Tn and sialosyl-Tn antigens, the present study aimed to elucidate the pattern of expression of these antigens in hyperplastic and adenomatous polyps and to determine whether expression might correlate with malignant potential in adenomas.

Methods
Tissue specimens
A total of 103 polyps were obtained by endoscopic polypectomy. There were 24 hyperplastic polyps, each measuring less than 1 cm in diameter, and 79 adenomatous polyps with the following size distribution: <0.5 cm (n = 12); 0.5-0.9 cm (n = 35); 1.0-1.9 cm (n = 24); and ≥2 cm (n = 8). Using haematoxylin and eosin stained slides, polyps were classified as to histological type and grade of dysplasia according to the criteria of Konishi and Morson.6 Adenomas containing carcinoma in situ were grouped with those containing severe dysplasia. Six of the adenomas had a focus of invasive adenocarcinoma. Synchronous polyps occurred in five patients: four patients had two adenomas, and one patient had four adenomas plus a hyperplastic polyp. All polyps were fixed in formalin, embedded in paraffin and cut into 4 μm serial sections for immunohistochemical staining.

Reagents
Monoclonal antibody TKH2 (IgG1) was raised against ovine submaxillary mucin and recognises sialosyl-Tn antigen.7 Hybridoma supernatant was a generous gift from Professor Sen-itiroh Hakomori, Biomembrane Institute, Seattle, WA. The B4 isolectin of vicia villosa seeds specifically agglutinates Tn-exposed erythrocytes.8 Biotinylated isolectin B4 of vicia villosa agglutinin was obtained from Sigma Chemical Co St Louis, MO. Biotinylated rabbit antimouse IgG+IgA+IgM, streptavidin-peroxidase conjugate, normal mouse IgG1, and normal rabbit serum were purchased from Zymed Laboratories, South San Francisco, CA.

Immunohistochemistry
Immunoperoxidase histochemistry was performed using a streptavidin-peroxidase...
technique with all steps conducted at room temperature as previously described. After deparaffinisation, slides were incubated with fresh 1% hydrogen peroxide in methanol for 10 minutes and then washed three times with buffered phosphate saline (PBS) (0·1 mol/l phosphate, 0·15 mol/l NaCl, pH 7·4). Next, normal rabbit serum (5% in PBS) was added for 20 minutes and blotted off. Slides were then incubated with mononclonal antibody TKH2 (1:10 solution of hybridoma supernatant) or biotinylated *vicia villosa* agglutinin (5 µg/ml) for 90 minutes and then washed three times. The slides that received TKH2 were then treated with biotinylated rabbit anti-mouse IgG+IgA+IgM (10 µg/ml in PBS) for 20 minutes and washed three times. All sections then received streptavidin-peroxidase conjugate (10 µg/ml) for 30 minutes followed by three washes. Finally, slides were reacted with 3,3′ diaminobenzidine substrate for 10 minutes, rinsed with tap water, counterstained with methyl green, and mounted.

Negative controls consisted of substituting mouse IgG1 for monoclonal antibody TKH2 and preincubating biotinylated *vicia villosa* agglutinin with 0·2 mol/l GalNAc – both of which resulted in negative staining. Positive controls consisted of including an antigen-positive colon cancer slide with each assay. In addition, TKH2 often reacted with endothelial cells of mucosal blood vessels, which served as a useful internal positive control.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Normal colon* (n=22)</th>
<th>Hyperplastic polyps (n=24)</th>
<th>Adenomatous polyps (n=79)</th>
<th>Cancer* (n=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tn:</td>
<td>3 (14%)</td>
<td>24 (100%)</td>
<td>79 (100%)</td>
<td>21 (72%)</td>
</tr>
<tr>
<td>Sialosyl-Tn:</td>
<td>0</td>
<td>7 (29%)</td>
<td>44 (56%)</td>
<td>28 (90%)</td>
</tr>
</tbody>
</table>

*Data on normal colon and colon cancer taken from reference 4.

Figures

Figure 1: Expression of Tn and sialosyl-Tn antigens in hyperplastic polyps. (A) Tn is expressed in the supranuclear cytoplasm of cells in all of the hyperplastic glands (original magnification ×50). (B) Sialosyl-Tn is typically absent in the hyperplastic epithelial cells, but capillaries in the surrounding stroma are positive (×50). (C) A few hyperplastic polyps expressed sialosyl-Tn antigen, but only a small percentage of cells were positive (original magnification ×50).

Scoring and Statistical Analysis

Within each polyp, the percentage of antigen positive cells was estimated by examining each low power field (10× objective) containing adenomatous or hyperplastic colonic epithelium. To be scored as positive (as indicated in the Tables) a polyp had to exhibit antigen expression in at least 5% of cells. In adenomatous polyps, the relation of TKH2 reactivity (in cytoplasm or secretions) to adenoma size, histological type, and severity of dysplasia was analysed by logistic regression analysis. Slides were interpreted for antigen expression without knowledge of the final pathological diagnosis.
Results

HYPERPLASTIC POLYPS

Tn antigen
All the 24 hyperplastic polyps reacted with vicia villosa agglutinin (Table I). As indicated in Figure 1A, Tn antigen expression was found predominantly in the supranuclear cytoplasm (Golgi region). In addition, goblet cells in normal looking crypts adjacent to hyperplastic polyps were strongly positive.

Sialosyl-Tn antigen
In contrast to Tn antigen, sialosyl-Tn was found in only 7 (29%) hyperplastic polyps (Table I).

ADENOMATOUS POLYPS

Tn antigen
All of the adenomatous polyps expressed Tn antigen (Table I). In adenomas with mild dysplasia, staining of cell cytoplasm occurred in the supranuclear region (Fig 2A), but with more severe degrees of dysplasia, cells exhibited diffuse cytoplasmic staining (Fig 2B and C). Goblet cells and secretions were strongly positive in the vast majority of adenomas (Fig 2A).

Sialosyl-Tn antigen
Expression of sialosyl-Tn was noted in 44 of 79 (56%) adenomas (Table I). Diffuse cytoplasmic staining was the predominant pattern (Fig 3A), although several polyps displayed antigen expression more in goblet cell vacuoles and secretions (Fig 3B) than in cell cytoplasm. For the most part, the subcellular distribution of sialosyl-Tn was similar to that of Tn, except that Tn was strongly positive in most goblet cell vacuoles, whereas sialosyl-Tn was found in only a minority of goblet cells.

As indicated in Table II, sialosyl-Tn expression in adenomatous polyps was associated with larger polyp size. Of 12 diminutive adenomas (≤0.5 cm), only one exhibited sialosyl-Tn expression, whereas all eight adenomas over 2 cm in diameter were positive. Within each size cate-
TABLE II

<table>
<thead>
<tr>
<th>Size</th>
<th><2 cm</th>
<th>2-9 cm</th>
<th>1-19 cm</th>
<th>>2 cm</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis</td>
<td>11/12 (8%)</td>
<td>18/35 (40%)</td>
<td>17/24 (71%)</td>
<td>8/8 (100%)</td>
<td>44/79 (56%)</td>
</tr>
</tbody>
</table>

Histological Type:
- Tubular: 1/10 (10%), 12/29 (41%), 11/14 (79%), 1/1 (100%), 25/54 (46%)
- Villous: 0/2 (0%), 3/3 (100%), 2/6 (33%), 5/5 (100%), 10/16 (63%)

Degree of dysplasia:
- Mild: 1/11 (9%), 8/24 (33%), 8/14 (57%), 17/49 (35%)
- Moderate: 0/1 (0%), 5/5 (100%), 2/3 (67%), 6/2 (100%), 9/11 (82%)
- Severe (cis): 0/0 (0%), 5/6 (83%), 7/7 (100%), 6/6 (100%), 18/19 (95%)

* cis = carcinoma in situ.

Figure 3: Sialosyl-Tn antigen expression in adenomatous polyps.
(A) Villous adenoma with mild dysplasia demonstrating intense antigen expression diffusely in cell cytoplasm (original magnification x50).
(B) Tubulovillous adenoma with severe dysplasia. Antigen expression is found in glandular secretions (original magnification x50).

dysplasia (p<0.005) and adenoma size (p<0.05), but not with histological type.

All six adenomas containing a focus of invasive carcinoma were sialosyl-Tn positive. However, the invading cancer cells were not always antigen positive.

The staining pattern of monoclonal antibody TKH2 in patients with synchronous polyps is shown in Table IV. This analysis demonstrated that even within a particular individual, the staining pattern of multiple polyps was not alike. In this group, it was the degree of dysplasia and not adenoma size or histological type that seemed to determine the level of sialosyl-Tn expression.

Discussion

Many studies have examined colorectal polyps for the expression of mucin species in general, using conventional mucin histochemical techniques, or particular carbohydrate structures on mucins, using monoclonal antibody or lectin immunohistochemistry. Generally, however, these studies have not focused on the expression of specific carbohydrate antigens in the innermost 'core' region of mucin O-linked oligosaccharides. In the present study two such antigens, Tn and sialosyl-Tn, were simultaneously examined in colorectal polyps because our previous study found these antigens to be highly sensitive and specific markers of colorectal cancer.

| cis = carcinoma in situ. |

TABLE III

<table>
<thead>
<tr>
<th>Histological type</th>
<th>Degree of dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>Tubular (n=54)</td>
<td>16/44 (36%)</td>
</tr>
<tr>
<td>Tubulovillous (n=16)</td>
<td>1/5 (20%)</td>
</tr>
<tr>
<td>Villous (n=9)</td>
<td>5/5 (100%)</td>
</tr>
</tbody>
</table>

* cis = carcinoma in situ.
Figure 4: Monoclonal antibody TKH2 reactivity in adenomatous polyps. (A) TKH2 binding is increased in larger adenomas (p<0.005). Abscissa: adenoma size (cm). Bars: mean (SD) values. (B) TKH2 binding is increased in adenomas with more villous component (p<0.01). Bars: mean (SD) values standard deviation. (C) TKH2 binding is increased in adenomas with greater severity of dysplasia (p<0.0005). Bars: mean (SD) values standard deviation. Open circles: adenomas containing carcinoma in situ.

Table IV Sialosyl-Tn expression in multiple polyps from the same individual

<table>
<thead>
<tr>
<th>Patient</th>
<th>Adenoma 1</th>
<th>Adenoma 2</th>
<th>Adenoma 3</th>
<th>Adenoma 4</th>
<th>Hyperplastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (cm)</td>
<td>Histological type</td>
<td>Degree of dysplasia</td>
<td>Cytoplasm</td>
<td>Secretions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Patient A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoma 1</td>
<td>0.9</td>
<td>T</td>
<td>Mild</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Adenoma 2</td>
<td>1.1</td>
<td>V</td>
<td>Severe</td>
<td>+++(80)*</td>
<td>+(5)</td>
</tr>
<tr>
<td>Patient B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoma 1</td>
<td>1.0</td>
<td>T-V</td>
<td>Mild</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Adenoma 2</td>
<td>0.9</td>
<td>T-V</td>
<td>cis</td>
<td>+++(50)</td>
<td>--</td>
</tr>
<tr>
<td>Patient C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoma 1</td>
<td>0.5</td>
<td>T-V</td>
<td>Moderate</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Adenoma 2</td>
<td>2.0</td>
<td>V</td>
<td>Severe</td>
<td>+++(80)</td>
<td>+(10)</td>
</tr>
<tr>
<td>Patient D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoma 1</td>
<td>0.7</td>
<td>T</td>
<td>cis</td>
<td>+(40)</td>
<td>--</td>
</tr>
<tr>
<td>Adenoma 2</td>
<td>0.7</td>
<td>T</td>
<td>Severe</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Patient E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoma 1</td>
<td>0.8</td>
<td>T</td>
<td>Mild</td>
<td>--</td>
<td>++(10)</td>
</tr>
<tr>
<td>Adenoma 2</td>
<td>1.0</td>
<td>T</td>
<td>Mild</td>
<td>--</td>
<td>+(5)</td>
</tr>
<tr>
<td>Adenoma 3</td>
<td>0.8</td>
<td>T</td>
<td>Mild</td>
<td>--</td>
<td>+(20)</td>
</tr>
<tr>
<td>Adenoma 4</td>
<td>1.1</td>
<td>T</td>
<td>Mild</td>
<td>--</td>
<td>+(10)</td>
</tr>
<tr>
<td>Hyperplastic</td>
<td>0.9</td>
<td>NA</td>
<td>NA</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

T=tubular; T-V=tubulo-villous; V=villous.
*Staining intensity: --absent; +weak; ++moderate; +++++strong.
Numbers in parenthesis: estimated percentage of positive cells.
NA=not applicable.

Fig 4A

Tn antigen was expressed by all hyperplastic and adenomatous polyps. Since hyperplastic polyps are believed to have no malignant potential, this finding would suggest that Tn antigen is not a good discriminant of malignant potential in polyps. However, it may be noteworthy that in adenomas, the cytological pattern of Tn antigen changed from a predominantly supranuclear (presumably Golgi) location to a diffuse intracytoplasmic pattern in accordance with increasing severity of dysplasia. Furthermore, the expression of Tn antigen in goblet cell vacuoles immediately adjacent to adenomatous and hyperplastic polyps is a pattern reminiscent of mucosa immediately adjacent to carcinomas but which was not seen in normal mucosa. Other investigators have also noted that *vicia villosa* agglutinin reacted with all hyperplastic and adenomatous polyps, with staining localised primarily to the supranuclear cytoplasm. However, in that study, *vicia villosa* agglutinin reactivity was diminished in adenomas with carcinoma in situ and frank carcinomas.

Sialosyl-Tn, unlike Tn, did discriminate between hyperplastic and adenomatous polyps. Only a few hyperplastic polyps reacted with monoclonal antibody TKH2, and those that were positive usually exhibited weak staining intensity in only a few cells. Adenomatous polyps, on the other hand, expressed sialosyl-Tn in 56% of cases, and those that were positive were the larger, more villous, and more dysplastic adenomas. In fact, all adenomas over 2 cm in diameter, all villous adenomas, and all but one adenoma showing severe dysplasia or carcinoma in situ expressed sialosyl-Tn antigen. Thus, sialosyl-Tn antigen expression by adenomas...
Mucin associated Tn and sialosyl-Tn antigen expression in colorectal polyps

seems to be associated with their malignant potential. This is supported by the finding that in individuals with more than one adenoma, sialosyl-Tn expression correlated with the severity of cellular dysplasia. We have observed that sialosyl-Tn expression by colon cancer tissues was associated with a poor prognosis whereas individuals with sialosyl-Tn negative tumours had overall and disease free five year survival rates 100% and 94%, respectively. In addition, sialosyl-Tn expression is apparently increased in metastatic colon cancer cells. Thus, expression of sialosyl-Tn antigen seems to be a marker of malignant progression in the colon.

To our knowledge, no study, has examined sialosyl-Tn expression in colorectal polyps with monoclonal antibody TKH2. However, monoclonal antibody B7.2.3 has been used to stain colorectal polyps in a few studies. In one study, only rare (<10% of cells) B7.2.3 reactivity was found in 1/20 adenomas from patients with concomitant colon cancers, and in 5/18 adenomas from adenoma bearing patients. However, in that study no villous adenomas were examined, and data concerning adenoma size and degree of dysplasia were not provided. Wolf et al reported monoclonal antibody B7.2.3 reactivity in 0/20 hyperplastic polyps and 13/81 (16%) adenomatous polyps, with staining associated only with tubulovillous or villous adenomas manifesting moderate or severe dysplasia. In contrast, Lillistrom et al found that 20/20 (100%) adenomatous polyps and 42/46 (91%) hyperplastic polyps reacted with monoclonal antibody B7.2.3. The discrepancies between the studies that have used B7.2.3 are difficult to explain, but could relate to differences in technique. In addition, although monoclonal antibody B7.2.3 has been shown to react with sialosyl-Tn antigen, recent data from the First International Workshop on Carcinoma-Associated Mucins (unpublished observations) indicates that this antibody also crossreacts with Tn antigen, whereas TKH2 used in the present study is specific for sialosyl-Tn.

Biochemical structural analysis of oligosaccharides on normal colorectal mucin indicates that Tn and sialosyl-Tn antigens are frequently found as internal structures adjacent to the apomucin polypeptide. Typically, however, these normal oligosaccharides are several sugars in length, which presumably prevents the binding of lectins or monoclonal antibodies to the innermost structures. This might explain the lack of vicia villosa agglutinin or TKH2 binding to normal colonocytes. The present study, showing that vicia villosa agglutinin binds to hyperplastic and adenomatous polyps suggests that these lesions manifest incomplete glycosylation thereby exposing the Tn antigen. The expression of sialosyl-Tn in colorectal polyps is also consistent with this concept. However, sialosyl-Tn antigen, but not Tn antigen, was selectively expressed by polyps with greater malignant potential. This indicates that during malignant transformation, although incomplete glycosylation is common, certain glycosylation pathways are preferred.

Supported by PHS Grants RO1 CA 52491 (SHI) and CA 47551 (YSK) from the National Cancer Institute, the Medical Research Service and a Medical Investigator Award from the Veterans Administration (YSK), and awards from the Aaron Diamond Foundation and The Chemotherapy Foundation (SHI).

Mucin associated Tn and sialosyl-Tn antigen expression in colorectal polyps.

S H Itzkowitz, E J Bloom, T S Lau and Y S Kim

Gut 1992 33: 518-523
doi: 10.1136/gut.33.4.518

Updated information and services can be found at:
http://gut.bmj.com/content/33/4/518

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Cancer: small intestine (189)
- Colon cancer (1547)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/