Subtypes of intestinal metaplasia and *Helicobacter pylori*

M E Craanen, P Blok, W Dekker, J Ferwerda, G N J Tytgat

Abstract

To determine whether there is a relationship between the presence of *H pylori* and the various subtypes of intestinal metaplasia in the gastric antrum, 2274 antral gastroscopic biopsies from 533 patients were examined. *H pylori* was found in 289 patients. Intestinal metaplasia in general was found in 135 patients. Type I intestinal metaplasia was found in 133 patients (98.5%), type II in 106 patients (78.5%) and type III in 21 patients (15.6%). Ninety-eight of these 135 patients (72.6%) were *H pylori* positive and 37 patients (27.4%) were *H pylori* negative. No statistically significant difference was found in the prevalence of type I and II intestinal metaplasia between the intestinal metaplasia positive and *H pylori* positive and intestinal metaplasia negative and *H pylori* negative patients. Type III intestinal metaplasia was found less often in the intestinal metaplasia positive and *H pylori* positive patients (11.2%) as compared with intestinal metaplasia positive and *H pylori* negative patients (27%) (p<0.05). In contrast with type I and II intestinal metaplasia type III intestinal metaplasia was found more often in moderate/severe intestinal metaplasia than in mild intestinal metaplasia (p<0.02). Within the group of patients with moderate/severe intestinal metaplasia, type III was found less often in the *H pylori* positive patients (p<0.05). We suggest that the gastric milieu for *H pylori* is less appropriate in type III intestinal metaplasia positive patients. As type III intestinal metaplasia might be regarded as a marker of possibly increased gastric cancer risk, the lower prevalence of *H pylori* in these type III intestinal metaplasia positive patients might be the result of severe changes in mucosal architecture.

There is overwhelming evidence that infection with *Helicobacter pylori* causes chronic active gastritis, which invariably involves the gastric antrum.1,2 Although acute gastritis has been described in volunteers after ingestion of *H pylori*,11 this condition is rarely encountered and biopsied in routine clinical practice. Eradication of *H pylori* may lead to rapid reversion of the histological abnormalities found in *H pylori* related gastritis.12 Failure to eradicate *H pylori* totally, however, yields only temporary improvement of the histological picture. This, in turn, may eventually lead to the progression of chronic active gastritis to chronic gastritis with a variable degree of atrophy.

Chronic atrophic gastritis and its accompanying lesion, intestinal metaplasia are widely recognised as being the most prevalent precursors of intestinal type gastric carcinoma.2 Subtypes of intestinal metaplasia have been identified based upon histological, ultrastructural, enzyme, and mucin histochemical characteristics. Some of the latter studies have suggested that a sulphomucin secreting, incomplete intestinal metaplasia subtype is particularly closely linked to intestinal type gastric carcinoma and may therefore be a marker of increased gastric cancer risk.4,5 In another study evidence was found for a strong association between the presence of intestinal metaplasia in general and *H pylori* in the gastric antral mucosa.6 We undertook this study in order to investigate further the relationship between the presence of *H pylori* and the various subtypes of intestinal metaplasia in the gastric antral mucosa.

Patients

METHODS

All patients were referred to the St Elisabeth's of Groote Gasthuis on clinical grounds for upper gastrointestinal endoscopy between December 1988 and June 1990. Endoscopy was carried out after an overnight fast. The endoscopes (Olympus GIF Q10,Q20) were cleaned with detergent, disinfected with 70% ethanol and rinsed with sterile water after each examination. Patients requiring emergency endoscopy or with previous gastric surgery were excluded.

Patients with antral abnormalities, varying from mild erythema of the mucosa to full blown endoscopic gastritis, gastric ulcer and carcinoma were included. The number of antral biopsies taken depended on the diagnosis made by the endoscopists. Biopsies were taken at 3 cm from the pylorus in mild erythema of the antral mucosa and in cases where there was severe endoscopic erythematous/exudative gastritis with or without erosions. Where gastric ulcer and carcinoma were present, biopsies were taken from the lesions and from the adjacent mucosa within 1 cm of the lesions along the lesser and greater curvature within 4 cm from the pylorus. All biopsies were fixed in 10% formalin, embedded in paraffin and cut at 5 μm. Routine staining with haematoxylin and eosin (H&E) was performed for histopathologic diagnosis and detection of *H pylori*. Where it was doubtful whether *H pylori* was present, additional Giemsa staining was carried out. *H pylori* was judged to be absent where both staining methods were negative for *H pylori*.

The extent of intestinal metaplasia as well as
the prevalence of its subtypes was assessed independently by two of the authors (MC/PB). The extent of distribution of intestinal metaplasia was graded as follows: (1) none (−); (2) mild degree (+); consisting of a few tubules to one third of the total area biopsied; (3) moderate degree (++), consisting of one third to two thirds of the total area biopsied; (4) severe degree (+++), consisting of two thirds or more of the total area biopsied. Biopsies showing intestinal metaplasia were serially sectioned and stained with: (1) alcian blue pH 2.5/periodic acid-Schiff (AB pH 2.5/PAS); (2) high iron diamine/alcian blue pH 2-5 (HID/AB pH 2-5) in order to identify subtypes of intestinal metaplasia.13,16 Subtypes of intestinal metaplasia were classified as described by Filipe.17

Type I intestinal metaplasia is characterised by the presence of goblet cells secreting acid sialomucins and sometimes sulphomucins, Paneth cells and mature, non-mucous secreting, absorptive cells. Type II is characterised by the presence of goblet cells secreting sialomucins and sometimes sulphomucins, almost complete absence of Paneth cells and replacement of absorptive cells by columnar mucous cells secreting non-sulphated mucins, and type III resembles type II intestinal metaplasia in most respects but the columnar mucous cells secrete predominantly sulphomucins.

STATISTICAL ANALYSIS

The χ² correct test and two tailed Student’s t test were used in the statistical analysis of the data collected when appropriate.

Results

A total of 2274 biopsies was examined from 533 patients. Intestinal metaplasia was found in 353 patients (25-3%) and H. pylori was found in 289 patients (54-2%) (Table I). In the group of 135 intestinal metaplasia positive patients, type I was found in 133 patients (98-5%), type II in 106 patients (78-5%) and type III in 21 patients (15-6%). Ninety eight of these 135 patients (72-6%) were H. pylori positive and 37 patients (27-4%) were H. pylori negative. Although the prevalence of type III intestinal metaplasia, in contrast with type I and II, increased with age, the difference in mean age between patients with type I, type II, and type III intestinal metaplasia (type I: 66 (14-1) years; type II intestinal metaplasia: 66-5 (13-1) years; type III intestinal metaplasia: 71 (12-9) years) did not reach statistical significance (0-05 p=0-1). For age related prevalence of intestinal metaplasia, intestinal metaplasia subtypes and H. pylori, see Table II.

RELATIONSHIP BETWEEN H. PYLORI SUBTYPES AND OF INTTESTINAL METAPLASIA (n = 135)

No significant difference in prevalence of type I and II intestinal metaplasia was found between the H. pylori positive patients (n=98) and the H. pylori negative patients (n=37) – namely, type I intestinal metaplasia: 99% (97/98) v 97-3% (36/37) and type II 76-5% (75/98) v 83-9% (31/37). In contrast, the prevalence of type III was significantly lower in the H. pylori positive patients than in the H. pylori negative patients (11-2% (11/98) v 27% (10/37) – p<0-05).

Mild intestinal metaplasia was found in 103 patients (76-3%), moderate/severe intestinal metaplasia was found in 32 patients (23-7%). Although moderate/severe intestinal metaplasia was found more often in the H. pylori negative group (32-4%) than in the H. pylori positive group (20-4%), this difference was not statistically significant (0-2 <p=0-3). No significant difference was found in the prevalence of type I and II intestinal metaplasia between mild and moderate/severe intestinal metaplasia (type I: 98% v 70-7%, type II: 75-7% v 87-5%). Type III was found more often in cases of moderate/severe intestinal metaplasia (31-3%) than in cases of mild intestinal metaplasia (10-7%) (p<0-02). Moreover, in the group of patients with moderate/severe intestinal metaplasia (n=32) type III was found more often in H. pylori negative patients (seven of 12) than in H. pylori positive patients (three of 20) (p<0-05).

Discussion

Based on observations in populations with a high risk of developing gastric carcinoma, Correa postulated that intestinal type gastric carcinoma might be the end result of a long process of sequential histological changes. It is assumed that chronic active gastritis may progress to chronic gastritis with variable degree of atrophy. On this atrophic background, intestinal metaplasia sets in and finally dysplasia and carcinoma develop.18-19 The possibly precancerous nature of chronic gastritis with severe atrophy is supported by the findings of Sipponen et al. They showed that in patients with chronic antral gastritis with severe atrophy, the relative risk of gastric carcinoma is increased 18 fold. The

TABLE I Characteristics of patients according to histological diagnosis (n = 533)

Histological diagnosis	Patients (n)	Mean age (SD)	Mean no. (SD)	Patients (n) IM+ (% n) Patients (n) HP+ (% n)	
Normal	126	51-6 (17-7)	2-9 (1-8)	0 (0%)	2 (1-6%)
Erosion	26	60-0 (15-7)	3-2 (2-2)	1 (3-9%)	12 (46-1%)
Gastritis	298	58-4 (16-3)	3-6 (2-8)	88 (29-5%)	289 (76-5%)
Gastric ulcer	67	63-8 (15-8)	8-7 (3-8)	37 (55-2%)	47 (70-2%)
Gastric cancer					
Intestinal type	8	77-5 (6-5)	8-9 (2-5)	8 (100%)	0 (0%)
Diffuse type	533	57-9 (11)	12-4 (4-1)	12 (12-5%)	0 (0%)

IM+ = Intestinal metaplasia positive.
HP+ = H. pylori positive.

TABLE II Prevalence of intestinal metaplasia, intestinal metaplasia subtypes and H. pylori according to age (n = 533)

<table>
<thead>
<tr>
<th>Age group (yr)</th>
<th>Patients (n)</th>
<th>HP+ = pos (%)</th>
<th>IM+ = pos (%)</th>
<th>Percentage in IM+ = patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(n)</td>
<td>(n)</td>
<td>Type I Type II Type III</td>
</tr>
<tr>
<td><20</td>
<td>2</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0%</td>
</tr>
<tr>
<td>20–29</td>
<td>34</td>
<td>12 (35-3%)</td>
<td>1 (2-9%)</td>
<td>100%</td>
</tr>
<tr>
<td>30–39</td>
<td>41</td>
<td>21 (51-2%)</td>
<td>3 (7-3%)</td>
<td>100%</td>
</tr>
<tr>
<td>40–49</td>
<td>86</td>
<td>43 (50%)</td>
<td>13 (15-1%)</td>
<td>100%</td>
</tr>
<tr>
<td>50–59</td>
<td>106</td>
<td>69 (65-1%)</td>
<td>25 (23-6%)</td>
<td>100%</td>
</tr>
<tr>
<td>60–69</td>
<td>114</td>
<td>66 (57-9%)</td>
<td>28 (24-6%)</td>
<td>92-8% 85-7% 14-3%</td>
</tr>
<tr>
<td>70–79</td>
<td>92</td>
<td>52 (56-5%)</td>
<td>38 (41-3%)</td>
<td>100% 81-6% 18-4%</td>
</tr>
<tr>
<td>≥80</td>
<td>58</td>
<td>26 (44-8%)</td>
<td>27 (46-6%)</td>
<td>100% 74-1% 22-2%</td>
</tr>
</tbody>
</table>

IM+ = Intestinal metaplasia positive.
HP+ = H. pylori positive.

598 Craenen, Blok, Dekker, Ferrerda, Tytgat

Downloaded from http://gut.bmj.com/ on June 22, 2017 - Published by group.bmj.com
cumulative cancer risk within 10 years of diagnosis was reported to be 8-7% for the age group 50-54 years. These observations clearly limit the use of intestinal metaplasia in general as an indicator of possibly increased gastric cancer risk. It has been shown, however, that sulphomucin secreting incomplete intestinal metaplasia subtype, that is, type III intestinal metaplasia, is found significantly more often in the mucosa surrounding intestinal type gastric carcinoma than in the mucosa surrounding either diffuse type carcinoma or benign gastric ulcer. This observation not only holds true for advanced carcinomas but for early carcinomas as well. Additional evidence from other studies has led to the assumption that only type III intestinal metaplasia might be regarded as a marker of increased gastric cancer risk. In this study, type III intestinal metaplasia, in contrast with type I and II, was found more often in moderate/severe intestinal metaplasia than in mild intestinal metaplasia. Moreover, the prevalence of this intestinal metaplasia subtype increased with age. Similar findings were reported by Sipponen et al. These data suggest that type III intestinal metaplasia might be the result of longstanding and persistent mucosal injury. Interestingly, in a six year follow up study of subtypes of intestinal metaplasia, type III was reported to be related to prolonged injury and chronicity, to delayed ulcer healing and frequent ulcer relapse.

At present, there is still much debate whether or not *H. pylori* and intestinal metaplasia are related. In the classifications of chronic gastritis by Whitehead, Cheli and Giacos and Wyatt and Dixon, intestinal metaplasia is considered more or less a sequel to inflammation and part of a progressive process. This leaves room for the concept that intestinal metaplasia might be a result of *H. pylori* related gastritis. In contrast, Correa and Yardley propose that the finding of intestinal metaplasia in gastric biopsies indicate an aetiology for gastritis distinct from *H. pylori*. They suggest that intestinal metaplasia is the result of exogenous and/or dietary factors rather than *H. pylori* infection. Kekki et al., however, showed in their longitudinal study that non-atrophic and non-metaplastic chronic gastritis can evolve into chronic atrophic gastritis with intestinal metaplasia. In an earlier study we reported that intestinal metaplasia was found more often in *H. pylori* positive patients than in negative patients. Therefore, because the possibility remains that *H. pylori* related chronic active gastritis may evolve into chronic gastritis with a variable degree of atrophy and intestinal metaplasia, we further investigated whether a different relationship could be found between *H. pylori* and the various intestinal metaplasia subtypes.

Type III intestinal metaplasia was found less often in *H. pylori* positive patients as compared with *H. pylori* negative patients. Although the overall degree of intestinal metaplasia in the latter two groups was not significantly different, type III intestinal metaplasia was found less often in *H. pylori* positive patients with moderate/severe intestinal metaplasia than in *H. pylori* negative patients with moderate/severe intestinal metaplasia. These results suggest that in type III intestinal metaplasia positive patients the gastric milieu has become increasingly inhospitable for *H. pylori*. It has been reported that this intestinal metaplasia subtype was found more often in the absence of appreciable inflammation and was rarely found in severe active gastritis. We found that the prevalence of *H. pylori* decreases in patients aged ≥60 years, whereas the prevalence of intestinal metaplasia in general and subtype III in particular, increases with age. All these data further support the concept of increasing inhospitality of the gastric milieu for *H. pylori*, as intestinal metaplasia represents an inhospitable site for this microorganism.

We believe that at least some of the intestinal type carcinomas might be the late result of *H. pylori* infection as depicted in the Figure. The process of gastrocarcinogenesis is multifactorial involving genetic factors and exogenous carcinogens. Recent studies have shown that the *H. pylori* serum antibody prevalence in populations with contrasting cancer risks is significantly higher in populations with a high cancer risk. Because there are also populations with a high
prevalence of *H. pylori* infection and a low gastric cancer risk, it is clear that there must be other factors at work in the process of gastric carcinogenesis. It may well be that *H. pylori* as a promoter in the latter process as suggested by Scott et al. and Correa. In view of their reports, the treatment of *H. pylori* related gastritis, leading to eradication of the microorganism, might assist in removing a potential risk factor in gastric cancer prone patients. The fact that all eight patients with intestinal type carcinoma in our study were *H. pylori* negative, is not necessarily contradictory to their postulate. It could merely reflect the inhospitable milieu for *H. pylori* in these patients. It is of interest that five of these eight patients were type III intestinal metaplasia positive.

In conclusion we believe that this is the first study addressing the distribution of intestinal metaplasia subtypes in relation to *H. pylori*. We suggest that the negative relationship between the presence of type III intestinal metaplasia and *H. pylori* is caused by the altered gastric milieu in type III intestinal metaplasia positive patients. At present, through discovery of *H. pylori* as the leading cause of gastric inflammation, much attention is directed to the long-term consequences of gastric inflammation. We think that investigations should also monitor intestinal metaplasia and its subtypes in long term follow up studies with and without eradication of *H. pylori*. This might lead to a better knowledge of the mechanisms involved in the development of intestinal type carcinoma. Because no real progress has been made in the early detection of gastric carcinoma, this would be of paramount importance.

14. Mowry RW. The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins: with revised directions for the colloidal iron stain, the use of alcin blue 8GX and their combination with the PAS reaction. *Ann NY Acad Sci* 1963; 106: 402-23.
Subtypes of intestinal metaplasia and Helicobacter pylori.

M E Craanen, P Blok, W Dekker, J Ferwerda and G N Tytgat

Gut 1992 33: 597-600
doi: 10.1136/gut.33.5.597