Effect of cholera toxin on the human jejunum

W Petritsch, A J Eherer, U Holzer-Petsche, T Hinterleitner, E Beubler, G J Krejs

Abstract
In order to develop a model for secretory diarrhoea and to confirm the in vitro effects of cholera toxin in man in vivo the effect of intrajejunally administered cholera toxin was investigated in healthy volunteers. An intestinal perfusion technique with an occluding balloon proximal to the infusion site was used. The jejunum was perfused under steady state conditions with a plasma like electrolyte solution containing polyethylene glycol as a non-absorbable volume marker. After two control periods of one hour each, during which water was absorbed at a rate of 104 (14) (mean (SEM), n=15) and 94 (15) ml/30 cm/h, respectively, three different doses of cholera toxin (6-25 μg, 12-5 μg, 25 μg) were administered by bolus into the lumen of the jejunum. Cholera toxin reduced absorption of water and electrolytes progressively over four hours and induced secretion in a dose dependent fashion. In the fourth hour net secretion amounted to 22 (23), 36 (24), and 88 (40) ml/30 cm/h (each n=five) with doses of 6-25, 12-5, and 25 μg cholera toxin, respectively. The movement of sodium, chloride, and bicarbonate paralleled water movement. Our results suggest that cholera toxin may serve as a secretory model in the human jejunum which might allow testing of new antisecretory agents.

Methods
SUBJECTS
Fifteen healthy volunteers (nine men, six women, mean age 28 years, range 22–38) gave written informed consent to participate. None of the subjects was taking any medication. A medical history, electrocardiograph, blood pressure, and standard laboratory findings were obtained before the experiment and were found to be negative or normal. Haematocrit was also obtained 24 hours after the experiment. The study was approved by the Ethics Committee of the University of Graz School of Medicine.

INTESTINAL PERFUSION
For intestinal perfusion a tube assembly with a proximal occluding balloon was used. The assembly with an outer diameter of 6 mm and a mercury bag at the tip was placed in the jejunum (infusion site at the ligament of Treitz). The correct position of the tube was confirmed by fluoroscopy. Because in animal studies digestive juice was a source of cholera toxin an occluding balloon proximal to the infusion site was used in order to avoid degradation of cholera toxin by pancreatic enzymes (E Beubler, unpublished observation). The sampling site was 30 cm distal to the infusion site. A fourth lumen enabled removal of endogenous secretions proximal to the occluding balloon. Perfusion was started in the morning after a 12–16 hour fast. A plasma like electrolyte solution (composition in mmol/l: Na+ 135, K+ 5, Cl 110, HCO3, 30, and 2 g/l polyethylene glycol, mean molecular weight 3350, as a non-absorbable volume marker) was perfused at 1 ml/minute using a peristaltic pump. The solution was bubbled with a mixture of 95% O2 and 5% CO2. A 30 minute equilibration period, during which the samples were discarded was followed by six hours of collection. Collection was performed by hand aspiration at a rate of 1.5 ml/minute using plastic syringes. Collected samples were pooled for each hour. After two control periods of one hour each, 6-25 μg, 12-5 μg, or 25 μg purified cholera toxin (Sigma, Deisenhofen, FRG) was administered intrajejunally as a bolus without interrupt-

TABLE 1	Effect of various doses of cholera toxin (CT) on net jejunal water movement (ml/30 cm/h). Cholera toxin was administered as a bolus after two hours of control perfusion			
Time (h) after CT	Intestinal dose of CT	6-25 μg	12-5 μg	25 μg
Control	–54 (24)	–118 (12)	–135 (26)	
1	–38 (22)	–104 (12)	–139 (19)	
2	–39 (21)	–98 (11)	–131 (22)	
3	–17 (18)	–64 (12)*	–120 (14)*	
4	–17 (24)*	+4 (24)*	+44 (9)*	
5	+22 (23)*	+36 (24)*	+88 (40)*	

Quade test: significantly different from controls, p<0.05; significantly different from all periods up to second hour after cholera toxin, p<0.05. Values are means (SEM), n=five, (-) denotes absorption, (+) denotes secretion.

Department of Internal Medicine and Experimental and Clinical Pharmacology, Karl Franzens University, Graz, Austria
W Petritsch
A J Eherer
U Holzer-Petsche
T Hinterleitner
E Beubler
G J Krejs

Correspondence to:
Wolfgang Petritsch, MD, Department of Internal Medicine, Karl Franzens University, Auenbruggerplatz 15, A-8036 Graz, Austria.

Accepted for publication: 20 January 1992

1174 Gut 1992; 33: 1174–1178
Effect of cholera toxin on the human jejunum

ing the intestinal perfusion. The perfusion was continued for another four hours. The transmural potential difference was measured between a NaCl filled subcutaneous cannula on one forearm and the luminal contents by means of calomel electrodes, using agar bridges between the cannula and the perfusion tube.

During the entire study the subjects electrocardiograph was displayed on a monitor. Pulse and blood pressure were measured every 20 minutes. After the experiment subjects were asked to drink sufficient liquids and to record frequency of bowel movements and to collect all stools for 24 hours.

ANALYSIS OF SAMPLES AND CALCULATIONS

Intestinal samples were analysed for Na⁺, Cl⁻, K⁺, and HCO₃⁻ (as total CO₂) using an automatized analyser (Synchro Clinical System CXS, Beckman, USA). Polyethylene glycol was determined according to the method of Hyden. Absorption and secretion rates in the test segment were calculated from the perfusion rate and the changes in polyethylene glycol and electrolyte concentrations.

STATISTICAL ANALYSIS

Results are expressed as means (SEM). Statistical analysis was performed using either the parameter free Quade test or the Kruskal-Wallis H-test as was appropriate. A p value of less than 0.05 was regarded as significant.

Results

EFFECTS OF CHOLERA TOXIN ON NET WATER AND ION TRANSPORT

During the two control periods absorption of water (104 (14) and 94 (15) ml/30 cm/h, n=15, respectively) and electrolytes was recorded in all subjects except in one who secreted. Jejunal secretion is, however, known to occasionally occur in healthy subjects. The secretory response to cholera toxin developed gradually. The first changes of net water and ion transport were observed after the second or third hour after administration of cholera toxin. The maximal effect during the four hour experiment occurred in the fourth hour after administration of cholera toxin (Tables I–V).

Cholera toxin caused dose dependent changes

Table I	Effect of various doses of cholera toxin (CT) on net jejunal Na⁺ transport (mmol/30 cm/h). Cholera toxin was administered as a bolus after two hours of control perfusion			
Time (h) after CT	Intravenous dose of CT	6.25 μg	12.5 μg	25 μg
Control	-3.9 (3.9)	-14.6 (3.3)	-16.4 (3.3)	
Control	-4.2 (3.2)	-13.2 (1.8)	-16.5 (2.4)	
1	-4.1 (3.0)	-11.6 (1.4)	-15.1 (2.8)	
2	-4.0 (5.0)	-7.8 (1.8)*	-7.6 (4.4)*	
3	-0.2 (4.4)	+2.5 (3.0)*	-11.2 (7.0)*	
4	+5.7 (3.8)*	+6.8 (3.4)*	+17.0 (3.7)*	

Quade test: *significantly different from controls, p<0.05; †significantly different from all periods up to second hour after cholera toxin, p<0.05. Values are means (SEM), n=five, (−) denotes absorption, (+) denotes secretion.

TABLE II Effect of various doses of cholera toxin (CT) on net jejunal Na⁺ transport (mmol/30 cm/h). Cholera toxin was administered after two hours of control perfusion

Table III	Effect of various doses of cholera toxin (CT) on net jejunal Cl⁻ transport (mmol/30 cm/h). Cholera toxin was administered as a bolus after two hours of control perfusion			
Time (h) after CT	Intravenous dose of CT	6.25 μg	12.5 μg	25 μg
Control	-1.3 (2.9)	-5.7 (1.4)	-7.8 (2.9)	
Control	+0.6 (2.1)	-4.9 (1.5)	-7.6 (2.5)	
1	+0.7 (1.6)	-5.1 (0.9)	-6.9 (2.0)	
2	+0.9 (2.3)	-3.1 (1.1)	-2.3 (2.4)*	
3	+2.9 (2.8)*	+2.3 (1.3)*	+8.7 (5.3)*	
4	+6.8 (2.5)*	+4.8 (1.8)* †	+14.6 (4.8)* †	

Quade test: *significantly different from controls, p<0.05; †significantly different from all periods up to second hour after cholera toxin, p<0.05. Values are means (SEM), n=five, (−) denotes absorption, (+) denotes secretion.

TABLE IV Effect of various doses of cholera toxin (CT) on net jejunal K⁺ transport (mmol/30 cm/h). Cholera toxin was administered as a bolus after two hours of control perfusion

Table V	Effect of various doses of cholera toxin (CT) on net jejunal HCO₃⁻ movement (mmol/30 cm/h). Cholera toxin was administered as a bolus after two hours of control perfusion			
Time (h) after CT	Intravenous dose of CT	6.25 μg	12.5 μg	25 μg
Control	-4.6 (0.7)	-8.8 (0.4)	-8.8 (1.3)	
Control	-4.0 (1.0)	-8.2 (0.5)	-8.9 (1.3)	
1	-4.1 (1.1)	-7.0 (1.0)	-8.5 (2.0)	
2	-3.9 (1.0)	-4.2 (1.4)*	-5.3 (2.5)	
3	-2.1 (1.6)	-0.2 (2.1)*	+1.2 (3.2)*	
4	-0.1 (1.6)*	+1.8 (1.8)* †	+2.5 (2.3)* †	

Quade test: *significantly different from controls, p<0.05; †significantly different from all periods up to second hour after cholera toxin, p<0.05. Values are means (SEM), n=five, (−) denotes absorption, (+) denotes secretion.

TABLE VI Effect of various doses of cholera toxin (CT) on stool frequency and weight (g) within 24 hours after the experiment

| Time (h) after CT | Intravenous dose of CT | 6.25 μg | 12.5 μg | 25 μg |
|-----------------|---------------------------------|-----------------|-----------------|

Values are mean (SEM), number of subjects from which results are available are given in square brackets.

in net fluid and ion transport (Figure). Measurements of water as well as Na⁺ and Cl⁻ revealed significant changes toward secretion induced by all three doses of cholera toxin (Tables I–III). Net movement of water was significantly differ-
ent from zero (secretion) when the 25 µg dose of cholera toxin was administered. Net K⁺ transport was not changed by the lowest dose of cholera toxin (6.25 µg). Net K⁺ absorption was significantly decreased by 12.5 µg cholera toxin, and only the highest dose (25 µg) caused net secretion (Table IV). HCO₃⁻ absorption was reduced by 6.25 µg cholera toxin and changed to secretion by the higher doses (Table V). Cholera toxin caused no change in potential difference in any of the groups.

Discussion

In this study we developed a model for intestinal secretion in man using cholera toxin as a secretagogue and measured the changes in jejunal water and electrolyte movement in response to cholera toxin. Our experiments showed a significant dose dependent change from absorption toward secretion of water and electrolytes. We found a maximum of fluid secretion of 88 ml/30 cm/h with a dose of 25 µg cholera toxin four hours after exposure to the toxin. Jejunal perfusion studies in patients with acute cholera studied by others showed a wide range of net fluid secretion from 2 to 326 ml/30 cm/h with corresponding movements of Na⁺, K⁺, Cl⁻, and HCO₃⁻ into the lumen. Thus, in the present study we induced secretion in the test segment which lies well within the range of secretion observed with naturally occurring cholera.

When 'cholera' is considered for experiments in healthy subjects the most important question to answer concerns safety. As opposed to natural cholera we used a single dose of purified cholera toxin but did not administer *Vibrio cholerae*, which would produce cholera toxin for several days. Thus, the expected time for intestinal secretion was limited. Moreover, only a very small segment of jejunum was exposed to the full dose of cholera toxin and because of the rapid binding of the toxin to the mucosa it was presumed that cholera toxin was not available in the distal small bowel to induce secretion. Some liquid bowel movements are expected after many
Effect on the human of cholera toxin is well known from animal experiments.16 17 22 It might be explained by the fact that the toxin is effective from the luminal side and binds irreversibly to a particular membrane receptor. It probably takes time to enter the cell and to activate a cascade of intracellular mechanisms leading to secretion of water and electrolytes. Carpenter assumed that increased fluid secretion began shortly after toxin administration but that net fluid production was not observed until the rate of secretion exceeded the rate of absorption.23 The secretory effect of cholera toxin in our study probably continued for hours as evidenced by the stool output after the experiment. Recovery occurs when the affected intestinal epithelial cells on the villi are replaced by new enterocytes moving up from the crypts.3

The late onset and long duration of secretion and the induction of significant HCO₃⁻ secretion are the most important differences between the effect of cholera toxin and other secretagogues such as vasoactive intestinal polypeptide or prostaglandin. Intravenously administered vasoactive intestinal polypeptide instantly changed absorption to secretion and the effect stopped after the end of the infusion. No subject developed diarrhoea, and even at the highest dose tested of 400 pmol vasoactive intestinal polypeptide/kg/h only reduced absorption or a low rate of secretion of water and electrolytes was observed.22 24 There was only a slight but statistically not significant decrease in HCO₃⁻ absorption caused by vasoactive intestinal polypeptide.23 This is in contrast to our results where cholera toxin induced marked secretion of HCO₃⁻. Intrajejunally administered prostaglandin E₂ at a dose of 0.9 μg/kg/min induced marked secretion of water and electrolytes beginning after 60 minutes and ending within 60 minutes after prostaglandin infusion. A dose of 5 μmol/l prostaglandin E₂ tested in our laboratory induced secretion of water, Na⁺ and Cl⁻ similar to 25 μg cholera toxin, but without affecting HCO₃⁻ absorption.25 One might speculate that HCO₃⁻ secretion is mainly initiated by certain agents such as toxins from the luminal side, whereas hormones or prostaglandins, which normally act from the basolateral membrane of enterocytes, do not significantly affect HCO₃⁻ transport in man in vivo. Another marked difference between the effects of cholera toxin and vasoactive intestinal polypeptide or prostaglandins is that secretion stopped promptly after prostaglandin or vasoactive intestinal polypeptide infusion. The latency of the response to cholera toxin as well as its prolonged effect depend on its mode of action as mentioned above. In contrast with cholera toxin, vasoactive intestinal polypeptide and prostaglandins are bound reversibly, and act only as long as their levels in plasma or in the intestinal lumen are raised.

In conclusion, our study shows a significant, dose dependent change from absorption to secretion of water and electrolytes in the human
jejunum induced by cholera toxin. This model is expected to lend itself to study the effectiveness of antisecretory agents in the human intestine.

Supported by Austrian Scientific Research Foundation Grant No P7441. The authors thank Ms S Hugill and Mr K Fürstauer for their excellent technical assistance.

Effect of cholera toxin on the human jejunum.

W Petritsch, A J Eherer, U Holzer-Petsche, T Hinterleitner, E Beubler and G J Krejs

Gut 1992 33: 1174-1178
doi: 10.1136/gut.33.9.1174

Updated information and services can be found at:
http://gut.bmj.com/content/33/9/1174

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Diarrhoea (663)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/