Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy

I Bjarnason, J Hayllar, P Smethurst, A Price, M J Gumpel

Abstract
This study assessed the effect of metronidazole on the gastroduodenal mucosa, intestinal permeability, blood loss, and inflammation in patients on non-steroidal anti-inflammatory drugs (NSAIDs). Thirteen patients were studied before and after 2–12 weeks' treatment with metronidazole 800 mg/day, while maintaining an unchanged NSAID intake. Intestinal inflammation, as assessed by the faecal excretion of indium-111 labelled neutrophils, and blood loss, assessed with chromium-51 labelled red cells, were significantly reduced after treatment (mean (SD)) 4.7 (4.7%) v 1.5 (1.3%) (N<1-0%, p<0.001, Cr red cells loss 2.6 (1.6) ml/day v 0.9 (0.5) ml/day (N<1.0 ml/day), p<0.01). Intestinal permeability assessed as the 5 hour urinary excretion ratio of 51CrEDTA/L-rhamnose did not change significantly (0.133 (0.046) v 0.154 (0.064), p>0.1) and there were no significant changes in the endoscopic or microscopic appearances of the gastroduodenal mucosa. These results suggest that the neutrophil is the main damaging effector cell in NSAID induced enteropathy. The main neutrophil chemotactant in this enteropathy may be a metronidazole sensitive microbe.

Gut 1992; 33: 1204–1208

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most successful group of drugs ever developed, with annual prescription rates in excess of 3000000 per million subjects in the western world. While this attests to their efficacy in reducing inflammation and pain, the treatment is not without side effects. The gastroduodenal mucosa is undoubtedly the main site of life threatening complications of NSAID treatment, manifesting as massive haemorrhage or perforation, and indeed NSAIDs may be an important cause of seemingly unexplained sudden deaths in the elderly.

In the past few years it has become clear that the small intestine is also damaged by NSAIDs. In fact long term treatment causes small intestinal inflammation in 70% of patients. The clinical importance of NSAID enteropathy lies in the associated complications of blood loss, protein loss, and occasional strictures that may require surgery. Although these complications are not usually life threatening, the consequent iron deficiency anaemia and hypoalbuminaemia (affecting 50% and 5–10% respectively of patients with rheumatoid arthritis) are major contributory factors to the morbidity of these patients.

The pathogenesis of NSAID enteropathy is unknown. It is suggested that NSAIDs cause immediate cellular damage during drug absorption perhaps by uncoupling oxidative phosphorylation. This may result in loss of the integrity of the intercellular junctions which is evident as increased intestinal permeability to paracellular probe markers within 12 hours of NSAID ingestion in man. After six months of NSAID treatment inflammation is evident. It is suggested that the permeability changes allow mucosal exposure of luminal toxins (bile acids, pancreatic juices etc) and this paves the way for a bacterial invasion of the mucosa and hence the neutrophil chemotaxis. The participation of bacteria is further inferred from studies showing that pretreating animals with broad spectrum antibiotics before NSAID administration reduces the damage in the small intestine, and some studies show minimal damage in germ free animals. During phagocytosis the neutrophils may cause tissue damage by oxygen free radical generation and lysosomal enzyme release and hence produce bleeding and protein loss.

The purpose of this study was to examine the effect of metronidazole on NSAID enteropathy in man. Intestinal permeability, inflammation, blood loss, and gastroduodenal morphology were assessed before and after metronidazole treatment in patients with established NSAID enteropathy.

Subjects and methods
Twenty patients who had been taking NSAIDs for more than six months underwent a screening phase and all 13 with NSAID enteropathy were recruited to the study. The clinical details of these patients are shown in Table I. Each subject was admitted to a metabolic research ward during these studies. On admission blood was taken for haematology and biochemistry and for leukocyte and red cell labelling. Intestinal permeability was assessed on day 6 and endoscopy was done on day 7. Patients were placed on metronidazole (200 mg, four times daily) while maintaining an unchanged intake of NSAIDs and were then restudied after 2–12 weeks. Metronidazole was chosen because of its wide use in gastroenterology (diverticulitis, small bowel bacterial overgrowth syndromes, sepsis, etc) and because it has a well defined antimicrobial spectrum.

Sixteen patients with the irritable bowel syndrome acted as controls for the In leukocyte and 51Cr red cell studies. Twenty healthy white volunteers acted as controls for the intestinal permeability studies.
Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy

<table>
<thead>
<tr>
<th>Case no</th>
<th>Sex</th>
<th>Age (yrs)</th>
<th>Diagnosis</th>
<th>Length of NSAID treatment (yrs)</th>
<th>Current NSAID</th>
<th>Other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>64</td>
<td>RA</td>
<td>3</td>
<td>Naproxen (750 mg/day)</td>
<td>Temazepam (20 mg/day)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>45</td>
<td>OA</td>
<td>6</td>
<td>Naproxen (1500 mg/day)</td>
<td>Temazepam (20 mg/day)</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>68</td>
<td>RA</td>
<td>3/4</td>
<td>Diclofenac sodium (150 mg/day)</td>
<td>Frusemide (40 mg/day)</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>66</td>
<td>RA</td>
<td>15</td>
<td>Naproxen (1000 mg/day)</td>
<td>Amiloride (5 mg/day)</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>61</td>
<td>OA</td>
<td>6</td>
<td>Indomethacin (100 mg/day)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>45</td>
<td>RA</td>
<td>3</td>
<td>Nabumetone (1000 mg/day)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>50</td>
<td>RA</td>
<td>18</td>
<td>Indomethacin (100 mg/day)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>70</td>
<td>OA</td>
<td>3/4</td>
<td>Indomethacin (150 mg/day)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>64</td>
<td>RA</td>
<td>9</td>
<td>Naproxen (1500 mg/day)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>57</td>
<td>RA</td>
<td>12</td>
<td>Flurbiprofen (200 mg/day)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>47</td>
<td>RA</td>
<td>2</td>
<td>Naproxen (2000 mg/day)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>69</td>
<td>OA</td>
<td>19</td>
<td>Diclofenac sodium (150 mg/day)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>66</td>
<td>OA</td>
<td>5</td>
<td>Fenbufen (900 mg/day)</td>
<td></td>
</tr>
</tbody>
</table>

RA=rheumatoid arthritis; OA=osteoarthritis.

These studies were approved by Harrow Health Authority Ethical Committee and all patients gave informed consent.

LEUKOCYTE LABELLING

At 10 am on the day of admission an indwelling cannula was placed into an antecubital vein. Sixty ml of blood were drawn into a syringe containing 11 ml of acid citrate dextrose (National Institutes of Health, formula A), dispensed into two sterile polythene tubes, and allowed to sediment for 1 hour at room temperature. The supernatant was removed and centrifuged at 100 g for 5 minutes. The supernatant was removed immediately and respun at 300 g for 10 minutes to yield cell free plasma. The pellet from the 100 g centrifugation was resuspended and incubated for 10 minutes at room temperature in 0·1 ml HEPES saline buffer (pH 7·4) containing 20 mM HEPES in 0·8% (vol/vol) sodium chloride, 4·4 mM tropolone, and 400 μCi (15 MBq) 111InCl3 (Amersham International, Amersham, Buckinghamshire, UK). Five ml of cell free plasma were then added to the cell suspension and centrifuged at 100 g for 5 minutes. The supernatant containing unlabelled 111InCl3 was poured off and the labelled cells were resuspended in 6-0 ml of cell free plasma. Five ml (9–12 MBq) were injected and the rest was used for standards. The labelling efficiency averaged 86% (range 79%–95%). The leucocytes maintain their integrity and function during the isolation and labelling procedure. Assuming a 300 μCi (11 MBq) dose of 111In is injected, the estimated radiation dose received by the patient during this procedure is 8·5 mSv (effective dose equivalent).

RED BLOOD CELL LABELLING

When blood was obtained for labelling leucocytes, 10 ml were also placed in 20 ml sterile citrate/phosphate/dextrose solution. This suspension was centrifuged at 1500 g for 10 minutes. Sodium chromate (51Cr) (Amersham International) was added dropwise to the pellet, with continuous mixing, to a final activity of 55·5 kBq/kg body weight. This mixture was allowed to stand at room temperature for 15 minutes.

The labelled cells were washed twice in isotonic saline which leaves less than 1% of the 51Cr unbound. Ten ml labelled cells were injected into the patient. Daily blood samples were collected and 4 ml of every sample were used as counting standards. Faeces was collected for 5 days and the faecal 51Cr activity was correlated with that of the blood standards from the previous day (which enables the calculation of blood loss into the intestine). The results are expressed as mean daily blood loss. The upper limit of normal for gastrointestinal blood loss is less than 1·0 ml/day. The estimated radiation dose from 55·5 kBq/kg body weight 51Cr-red cells is 1·2 mSv.

Because of the high initial 111In activity in the stools, it is necessary to delay counting of 51Cr activity for 3 to 4 weeks to allow the 111In to decay.

INTESTINAL PERMEABILITY

The test solution consisted of 200 μCi (7·4 MBq) chromium-51 - ethylene - diaminopteretra - acetate (51CrEDTA) (Amersham International, Amersham, Buckinghamshire, UK) and 0·5 g L-rhamnose (Sigma Chemical Co, Poole, Dorset, UK) in 100 ml water. At 8 am, after an overnight fast, subjects drank the test solution. They fasted for a further 2 hours, after which they were allowed normal food and fluid intake. Complete urine collections were made for 5 hours (8 am to 1 pm) into a bottle containing 1 ml thiomersal (10% w/v) as a preservative for L-rhamnose. On completion, urine values were measured and 5 ml samples counted in an LKB Wallace 1280 γ counter along with a 1:500 dilution of the test solution. Each sample was counted for minutes at appropriate channel settings giving a minimum detectable 51Cr activity of less than 0.01% of the administered dose per litre of urine. Counting was done 2 weeks after completion of studies to avoid interference from urine 111In. The activity of 51Cr from red cells in urine is trivial in comparison with the 51CrEDTA. The normal upper limit of the 51CrEDTA-L-rhamnose urine excretion ratio (% dose) is 0·09 (N:20). The estimated radiation dose received during the test is 0·24 mSv.
Thin layer chromatography was used for estimating L-rhamnose.\(^7\) This involved measurement of peak heights by scanning densitometry incorporating an arabinoce internal standard to overcome errors of application. Sugar separation was achieved by multiple development on half plates (10 cm×20 cm) of plastic backed silica gel 60 (Merk, 5748, Dassel, Germany) using three consecutive ascending runs (8.5 cm each) with ethyl acetate/pyridine/acetic acid/water (75:15:10:10, by volume). The layers were dried for at least 30 minutes between each run, and then for 4 hours (preferably overnight) to remove pyridine before performing a 4-aminobenzoic/phosphoric acid colour reaction at 120–130°C for 10 minutes. After location, chromatograms were kept refrigerated in polythene envelopes, and exposure was minimised during scanning. Peak heights were measured and corrected to a constant internal standard value. Test concentrations were then derived by interpolation from a standard rhamnose concentration curve from the same chromatogram.

This chromatographic procedure is accurate and sensitive, recovery being above 90% and the minimum level of detection below 0.1 mmol/l for L-rhamnose. The precision lies between 3 and 8% (coefficient of variation without replication) over the test range of sugar concentration. From the above the percentages of dose excretion of \(^{51}\)CrEDTA and L-rhamnose in urine were calculated. The results are expressed as a urine excretion ratio of \(^{51}\)CrEDTA/L-rhamnose which is a specific index of intestinal permeability, largely unaffected by other non-permeability variables of marker permeation rates.\(^8\)

Figure 1: The 4-day faecal excretion of indium-111 before and after 2-12 weeks' treatment with metronidazole. The vertical line indicates the upper normal limit of excretion.

ENDOSCOPY AND HISTOLOGY

The day after the permeability test, patients on NSAIDs underwent gastroduodenoscopy (Olympus XQ20) with biopsy. Endoscopic damage was assessed by a modified Lanza score system.\(^9\) For the stomach, grades 0–3 had 0–2, 3–5, 6–10, and >10 erosions or submucosal haemorrhages respectively, and grade 4 had erosions or submucosal haemorrhages too numerous to be counted or an ulcer with clear disruption of the mucosal epithelium and a diameter greater than 0.5 cm. In the duodenum grade 0–3 had 0–1, 2–5, 6–10, >10 erosions, and grade 4 a duodenal ulcer.

Endoscopic biopsies (N:2) were taken from each of the following sites; the mid-greater curve of the body, the greater curve in the antrum at least 2 cm from the pylorus and from the duodenal bulb. They were routinely formalin fixed and paraffin processed. Sections (3 µm) were cut and stained with haematoxylin and eosin, periodic acid Schiff reagent/Alcian blue and Cresyl-fast violet, the latter to aid detection of *Helicobacter pylori* like organisms.

Gastritis was assessed according to the Sydney system.\(^9\) In relation to this study, the key features are the grading (mild, moderate, or severe) of inflammation (lymphocytes and plasma cells), activity (neutrophil polymorphs), atrophy, intestinal metaplasia, and numbers of *H pylori* like organisms.

STATISTICAL ANALYSIS

The paired Student's *t* test was used to assess sequential changes.

Results

Metronidazole did not cause any adverse reaction during these studies. There was no significant change (p>0.1) in clinical disease activity, the haemoglobin concentration (11.5 (1-8) v 11.6 (1-8) g/dl (mean (SD)), or the erythrocyte sedimentation rate (33 (30) v 30 (29) mm hour).

\(^{111}\)In LEUKOCYTES

The scintigrams confirmed NSAID enteropathy, and although subjective improvement was evident after treatment this cannot be quantitated accurately and hence the need for faecal analysis.

Figure 1 shows that treatment with metronidazole caused a significant reduction (p<0.001) in the 4 day faecal excretion of \(^{111}\)In leukocytes from 4.7 (4-7)% to 1.5 (1-3)%. Each patient responded and after treatment five of the 13 were

TABLE II: Endoscopic findings in the stomach and duodenum before and after treatment with metronidazole

<table>
<thead>
<tr>
<th>Endoscopic grade</th>
<th>Stomach Before</th>
<th>Stomach After</th>
<th>Duodenum Before</th>
<th>Duodenum After</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy

within the normal range (N<1%, 0.51 (0.16)%) (mean (SD)).

RED BLOOD CELL LOSS
Ten of 13 patients underwent 51Cr red blood cell loss studies. Treatment with metronidazole caused a significant reduction in the mean daily blood loss from 2.6 (1.6) ml/day to 0.9 (0.5) ml/day (p<0.01), (N=1 ml/day, mean (SD) 0.2 (0.1) ml/day).

INTESTINAL PERMEABILITY
Figure 2 shows that there were no significant changes in the 51CrEDTA/L-rhamnose urine excretion ratios during metronidazole treatment. Ratios before and after treatment were 0.133 (0.046) and 0.154 (0.064) respectively (p>0.1), (N<0.05).

ENDOSCOPY AND HISTOLOGY
Ten patients underwent endoscopy with biopsy. Table II shows that endoscopic appearances did not change significantly during treatment. Of the 10 pairs of biopsy specimens taken from the body, antrum, and duodenum, the main abnormalities were found in the antrum. The antral specimens were normal in two, and three sets showed features typical of reactive (reflux) gastritis – a pattern associated with NSAID administration$^{11-12}$ before and after treatment.

In the remaining patients the severity of the chronic inflammatory infiltrate and activity was reduced by one grade between biopsies in three patients. There was an increase of one grade in two patients. H pylori like organisms were detected in two patients and persisted despite metronidazole.

Discussion
This study shows that treatment with metronidazole selectively reduces intestinal inflammation and blood loss in patients with NSAID enteropathy. The results seem to conform to the proposed pathogenic mechanism of NSAID enteropathy, namely that intestinal permeability changes predominantly reflect the direct cellular toxicity of NSAID$^{11-12}$ and the consequential inflammation may be a result of a bacterial invasion of the mucosa. The endoscopy results further suggest that it is the small bowel and not the stomach or duodenum that is the main site of chronic low grade blood loss in patients on long term, NSAIDs.$^{11-12}$ This contrasts sharply with the life threatening bleeding in NSAID users that almost invariably originates in the stomach or duodenum.$^{11-12}$

Metronidazole is a narrow spectrum antibiotic with activity against primarily anaerobic organisms, particularly bacteria and protozoa. It is in the anaerobic environment alone that the drug is reduced to its active metabolite, which is thought to bind to microbial DNA and inhibit nucleic acid synthesis. The drug is used extensively in gastroenterological practice: in small bowel bacterial overgrowth and blind loop syndromes,11 in colonic Crohn’s disease, and as part of combination antibiotic cover during large bowel surgery.11

Metronidazole is also known to have other actions. It may suppress cellular immunity,13 it sensitises hypoxic cells to radiation damage, and it may be mutagenic; but there is no evidence that metronidazole affects neutrophil function directly.

It therefore seems that there is a metronidazole sensitive micro-organism which is the main neutrophil chemoattractant in NSAID enteropathy. The precise characterisation of this agent awaits further study but it is clear that most patients with NSAID enteropathy have normal 14C glycholate breath tests, urinary indicans, and vitamin B_12 absorption,$^{14-15}$ all of which may be affected in non-specific intestinal bacterial overgrowth syndromes.16 Bacteriological studies in NSAID induced small intestinal damage in experimental animals have not, however, identified a single organism. Rather, the involvement of bacteria has been inferred from studies showing that pretreatment with broad spectrum antibiotics may prevent small intestinal ulceration caused by indomethacin and that germ free animals do not seem to develop the lesions.$^{17-19}$

Treating the animals with antibiotics has, however, been uniformly unsuccessful in promoting healing of indomethacin induced lesions.$^{17-19}$ This contrasts with the current results and suggests that the pathogenesis of NSAID induced small intestinal inflammation differs in man and rats.

The concomitant reduction in intestinal blood loss after metronidazole treatment suggests that most of the complications of the inflammation (blood and protein loss, ileal dysfunction) are a consequence of neutrophil activation.$^{17-19}$ It is thus possible that most of the tissue damage is caused by neutrophils generating free oxygen radicals and releasing lysosomal enzymes when in contact with a chemoattractant within the lamina propria.$^{17-19}$ That metronidazole has its effect at this late stage of NSAID enteropathy is
further supported by the findings that small intestinal permeability is not significantly affected by the treatment.

Collectively these data also suggest that the mechanism of NSAID induced blood loss in patients on long term NSAID treatment is the small intestine. Previous studies in man have shown a significant correlation between inflammatory activity (faecal excretion of 111In leukocytes) and 99mTc red cell loss. This is, however, the first study that also assesses gastrointestinal damage. The changes occurring in this limited biopsy series, in particular the inflammatory infiltrate, were on a minor scale and of no consistent pattern. They are unlikely to be the origin of the abnormalities shown by the labelling techniques. As the histological damage did not change in harmony with the inflammation and blood loss, it suggests that most of the chronic intestinal blood loss is from the small intestine. This is in keeping with large endoscopy studies showing that only rarely is there a gastroduodenal cause for positive faecal blood in patients on NSAIDs. 41, 42 Furthermore, small bowel enteroscopy in patients taking NSAIDs has confirmed the abnormalities in the mid small bowel, which range from erythematous blebs and villus atrophy to frank ulceration, all of which may bleed. Combined with reduced food intake and a high gastric pH, mild blood loss (1–8 ml/day) may be an important factor in the development of iron deficiency in patients with rheumatoid arthritis.

NSAID enteropathy and its complications contribute significantly to the overall morbidity of patients receiving these drugs. Metronidazole reduces intestinal inflammation and blood loss in NSAID enteropathy but the precise mechanism has not been established. Short courses of metronidazole may be indicated in patients with problematic iron deficiency anaemia or hypalbuminaemia but long term treatment is clearly hampered by the possibility of peripheral neuropathy and other serious side effects of metronidazole.

Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy.

I Bjarnason, J Hayllar, P Smethurst, A Price and M J Gumpel

Gut 1992 33: 1204-1208
doi: 10.1136/gut.33.9.1204

Updated information and services can be found at:
http://gut.bmj.com/content/33/9/1204

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/