Contractile activity of the human colon: lessons from 24 hour studies

G Bassotti, M D Crowell, W E Whitehead

Abstract
The motor function of the colon is probably the least understood of the various hollow viscera of the human body. It is partly because of the marked variability of colonic motor function and the short recording periods usually used, generally not exceeding three hours. Most of the data available on human colonic motility originate from investigations conducted in the most distal portions of the viscera, because of technical difficulties in reaching its proximal portions. Although attempts have been made to solve these problems through the ingestion of radiotelemetric pressure sensors, these efforts have been hampered by intermittent signal loss and the inability to control the location of the capsule within the gastrointestinal tract. To overcome these problems, techniques have recently been developed that permit prolonged recordings (24 hours or more) of myoelectrical and contractile activity of the human colon, both with and without perfusion and solid-state manometric systems. The present paper reviews the current experience in 24 hour recording from the human colon, with a primary emphasis on the more forceful propulsive contractile activity associated with the so-called mass movements.

(Gut 1993; 34: 129–133)

Non-propulsive motility
Basal and stimulated colonic contractile activity is virtually always of the segmental type – that is, represented by relatively low amplitude waves, occurring singly or in bursts, in a random sequence. The functional significance of non-propulsive motility is probably that of mixing intraluminal content and shifting it over short distances, permitting adequate absorption of water and electrolytes. Observations by radiological and mixed manometric radionuclide methods support this concept.

Two independent groups of researchers have reported the presence of a rectal motor complex, but no patterns of cyclic motility have been reported from the anal canal. Additionally, no cyclic or regular pattern has been observed in the colon more than 25 cm from the anal verge.

Diurnal patterns of motility
It has been suggested on the basis of short periods of observation that sleep depresses colonic motility, but this was not confirmed by some authors, and others noted a wide variability of rectosigmoid motor activity during sleep. Prolonged studies have consistently shown decreased motor activity during the night and during daytime naps, however, providing a more definitive answer to the contradictory data previously available on colonic motility during sleep.

Morning awakening provides a strong stimulus for increased colonic contractile activity. Moreover, increased motility was observed immediately after occasional afternoon naps. This observation has also been supported by a recent report on healthy volunteers, showing that sudden awakening is accompanied by a strong increase in segmental motility from the colon.

Contractile activity increases promptly with food ingestion (within one to three minutes after the first mouthful of food) and lasts several hours after ingestion of a meal. The early component of the meal stimulated increase in contractile activity is thought to be neurally mediated and the late component is thought to be hormonally mediated. The physiological basis of this response, however, is not well understood. The colonic motor response to eating, characterised by both low amplitude, frequent, irregularly spaced contractions, and occasional high-amplitude propagated contractions, show that eating is one of the most physiological and powerful stimuli to elicit colonic motility.

One investigation aimed at characterisation of this response showed that it differs in the various colonic segments, with the proximal ones displaying brisk and less sustained contractile activity than the distal ones. On the basis of this and other studies, it has been suggested that a functional physiological specialisation does exist in the human colon, with the proximal segments representing sites of mixing and storage of contents, whereas the distal ones would act as a conduit to propel faeces to the rectal ampulla.

The above observations are further supported by evaluation of defaecatory patterns. Most individuals experience the urge to defecate on morning awakening and after meals, when colonic motility is known to peak.

High amplitude propagated contractions and their relationship to mass movements
Mass movements were first described by Hertz...
in 1907\(^2\) (who also noted their relationship to meals\(^9\)) and later by Holzknecht in 1909, who is frequently credited with their discovery.\(^{14}\) As described by radiological methods, mass movements define an infrequent, aborally propagated displacement of colonic contents for long distances along the viscus.\(^{13\,\,17\,\,45\,\,46}\) Only a few manometric studies have attempted to characterise the motility patterns associated with mass movements. These investigations were performed under non-physiological conditions – that is, through colostomies,\(^{47\,\,48}\) or after colonic stimulation with laxatives or balloon distension.\(^{25\,\,26}\)

Recent studies which used long term recording of colonic motility with a colonoscopically positioned manometric probe,\(^{20\,\,21\,\,22}\) and simultaneous measurement of transit through intraluminally instilled radiolabelled compounds\(^{26}\) have provided more detailed information on the relationship of motility to mass movements: (1) high amplitude propagated contractions (pressure waves greater than 50 mmHg which are propagated more than 10 cm) occur infrequently in normal subjects, averaging six per 24 hours. (2) Because their amplitude, which may exceed 200 mmHg, high amplitude propagated contractions are easily differentiated from other colonic contractions. Some studies, however, suggest that low amplitude waves (typically 10–30 mmHg) may propagate over relatively long distances and may move colonic contents.\(^{25\,\,26}\) These low amplitude propagated contractions are reported to be more frequent. It is unknown whether low amplitude propagated contractions and high amplitude propagated contractions have the same physiological basis and serve the same function – that is, whether they are parts of a continuum of propagated contractions. (3) High amplitude propagated contractions start from the ascending colon\(^{26}\) (old observations also suggest that the appendix may be involved in such forceful activity),\(^{25\,\,26}\) and most are propagated in an aboral direction. Rarely, they may propagate in an oral direction.\(^{24}\) (4) High amplitude propagated contractions are frequently associated with a crampy urge to defaecate or actual defaecation and sometimes with borborygmi.\(^{19\,\,20}\) Despite their high amplitude, however, they are rarely associated with pain. (5) High amplitude propagated contractions are associated with specific physiological or behavioural events, being more frequent during the day (80% of occurrences), after meals (50% of occurrences), and upon awakening in the morning (33% of occurrences).\(^{25\,\,26}\)

The function of these forceful propulsive waves seems chiefly that of shifting a relatively large quantity of intraluminal content aborally for long distances within the colonic lumen, thereby determining a right-to-left gradient important for the initiation of defaecation.\(^7\) Not all high amplitude propagated contractions result in an immediate defaecation, however, and not all defaecations are immediately preceded by high amplitude propagated contractions, because subjects normally store stool in the rectum or distal bowel until defaecation is socially convenient. High amplitude propagated contractions are elicited by some types of laxatives (especially by sacodyl),\(^{47\,\,48\,\,50\,\,54}\) which provides further evidence of their role in defaecation.

To date, no data are available about the neurohumoral mechanisms underlying high amplitude propagated contraction onset. One recent paper showed that cholinergic stimulation does not evoke this kind of propagated activity, although it does increase segmental contractions.\(^{33}\) Hardcastle and Mann\(^{40}\) showed that propagation depends on the integrity of the enteric nervous system, but the role of the extrinsic nerves has not been assessed.

Pathophysiological applications of prolonged colonic recordings

Apart from increasing our understanding of normal colonic motility patterns, prolonged recordings are providing useful information about different pathological conditions. A recent study showed that chronically constipated subjects displayed significantly fewer high amplitude propagated contractions and a decreased frequency of urge to defaecate,\(^{40}\) suggesting that one important pathophysiological mechanism for constipation may be a decrease in the propulsive ability of the viscus. Other studies have disclosed that patients complaining of slow transit constipation have impaired cyclic rectal activity,\(^{36\,\,48}\) suggesting that these patients have a motor neuropathy.

Although irritable bowel syndrome is commonly believed to be a colonic motility disorder, the evidence supporting this hypothesis is inconsistent. Most of the motility studies on irritable bowel syndrome patients have been conducted for brief periods of time in the very distal portions of the viscus.\(^{39\,\,40}\) Prolonged recordings have recently confirmed that constipation predominant irritable bowel syndrome patients have significantly fewer high amplitude propagated contractions than controls, implying that they have impaired colonic propulsive activity.\(^2\) Diarrhoea predominant irritable bowel syndrome patients were found to have normal numbers of high amplitude propagated contractions, although the amplitude of high amplitude propagated contractions was significantly reduced relative to controls.\(^{42}\) The physiological significance of the findings in diarrhoea predominant irritable bowel syndrome patients, which were contrary to expectation, is unknown.

Technical limitations and critical evaluation of colonic manometric recordings

Although open tipped tubes and intraluminal strain gauges have been widely used for the measurement of contractile activity in the colon, it has been argued on theoretical grounds that they detect only lumen occluding contractions, and therefore underestimate the incidence of contractile activity.\(^{43\,\,44}\) A direct comparison of serosal strain gauges to open tipped catheters, however,\(^{46}\) showed that open tipped tubes detected 87% of all tonic contractions and 80% of all phasic contractions recorded by serosal strain gauges. The contractions recorded were of varying amplitudes, and Cook et al's tracings show good reproduction by the open tipped tube.
Contractile activity of the human colon: lessons from 24 hour studies

recordings of both the shape and amplitude of contractions measured from the serosal strain gauges throughout a wide range of amplitudes. Thus, open tipped tubes and intraluminal solid state pressure transducers appear to provide a good estimate of the amount and characteristics of contractile activity.

Another concern which has been raised about the validity of intraluminal recordings is that the bowel evacuation which is used to facilitate placing the probe may alter contractile patterns. Dinose et al. show that contractile activity is greater after a cleansing enema than in the unprepared colon.16 Differences in motility, however, can be recorded after bowel preparation which are consistent with the typical symptoms of the patients studied.16 30 Moreover, as the intraluminal contents may influence motility, it is safer to infer that differences between individuals in motility patterns are causally related to their altered bowel habits if these motility patterns are seen when the intraluminal contents are similar—that is, after bowel evacuation, as opposed to varying from liquid to hard masses.

Comparative physiology
The lack of an appropriate animal model has hampered progress on the investigation of colonic motor activity. The structure and function of the large intestine varies greatly among mammals,31 with variability concerning mostly the extent of the sacculations and the size of the caecum.32 33 The simplest large intestines, exhibiting a vestigial caecum and no sacculations, are found in the rat, cat, and dog, which are the animals most frequently used in studies on colonic motor function. The colon in these animals is a smooth, uniform tube, without sacculations or teniae, and it is approximately C-shaped and devoid of the sharp angulations seen in man.34 Furthermore, the electrophysiological properties of the colonic circular muscle of the cat and dog are very different from that of the human colon.35 36 In recent years, however, the canine colon has become a standard model for colonic motility studies and, although it displays some kinds of contractile activity not seen in man,37 38 it has been useful for investigating neuropharmacological interactions.

The best animal model for colonic physiology in man appears to be the pig. This animal has a similar diet, the colon has a caecum similar to man, and the anatomy is similar at the microscopic level. Like man, the pig shows spontaneous constipation and diarrhoea (perhaps pigs also have irritable bowel syndrome . . .). These two species also have similar patterns of contractile activity.39 The pig has rarely been used in physiology laboratories because of its size and temperament, but the development by animal breeders of a minipig with better temperament may change this.

Future directions
Prolonged pancolonic recordings may play an important role in elucidating the physiological mechanisms underlying different patterns of colonic motility and their functional significance. For example, simultaneous monitoring of the EEG and large bowel motility has shown that sleep has profound inhibitory effects on overall colonic contractions and is the major determinant of the daily variations of motility.71 Abnormalities in the inhibition of motility during sleep should be evaluated in patients who report nocturnal faecal incontinence.

Solid state catheters, which produce data closely comparable with those acquired from perfused tubes, will permit more physiological recordings from freely ambulating subjects in their normal work and social environment, once some technical limitations are resolved—that is, fixed position of recording points, difficulty in spacing sensors less than 5 cm from each other, fragility of the probes, few recording points available, expensive price, and maintenance. Moreover, the application of the barostat to long term recordings of colonic motility,72 73 may prove useful to assess other pathophysiological aspects of functional colonic disorders.

Finally, preliminary results from the evaluation of severely constipated patients for whom surgery is being considered suggest a possible diagnostic role for prolonged colonic recordings, especially when coupled with pharmacologic stimulation.74 This fact is particularly significant in light of the poor outcomes sometimes reported after surgical procedures for constipation75 76; a thorough in depth functional evaluation, especially coupled to small bowel recordings, in order to exclude a more generalised gastrointestinal motor disorder,77 might yield more effective results after surgery in patients with chronic constipation.

Contractile activity of the human colon: lessons from 24 hour studies

Contractile activity of the human colon: lessons from 24 hour studies.

G Bassotti, M D Crowell and W E Whitehead

Gut 1993 34: 129-133
doi: 10.1136/gut.34.1.129

Updated information and services can be found at:
http://gut.bmj.com/content/34/1/129

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/