Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells

W Dippold, B Wittig, W Schwaeble, W Mayet, K-H Meyer zum Bueschenfelde

Abstract
The expression of intercellular adhesion molecule-1 (ICAM-1, CD54) was examined in 16 surgically removed colonic tumours and two colonic carcinoma cell lines. Immunohistochemistry showed a varying percentage of ICAM-1 positive colonic carcinoma cells in 9/16 tissue specimens, while normal colonic tissue (apart from a slight reactivity of endothelial cells) was not stained. The presence of the ICAM-1 molecule on the cell surface and the expression of ICAM-1 mRNA were investigated for two colonic carcinoma cell lines. It was possible to enhance the expression of ICAM-1 considerably by incubating the cells in the presence of inflammatory cytokines in HT-29 and CaCo-2 cells. The responsiveness to either interferon α (IFN-α), tumour necrosis factor α (TNF-α), or interleukin 1β (IL-1β) treatment was different in each cell line. Interestingly, ICAM-1 is shed by colonic carcinoma cells because soluble sICAM-1 was detected in the cell culture supernatants. In comparison with normal serum samples, the mean value of sICAM-1 in 63 samples of patients with colonic carcinoma and in 20 cases of active inflammatory bowel disease is raised about twofold. It remains to be clarified what part both forms of ICAM-1 play in the course of colonic cancer, ulcerative colitis, and Crohn’s disease.

(Gut 1993; 34: 1593-1597)

ICAM-1, the intercellular adhesion molecule-1 represents a cell surface bound glycoprotein of 70 to 110 kilodaltons (kDa). It mediates adhesion dependent cell to cell interactions and is expressed on haematopoietic cells such as tissue macrophages, monocytes, B-cells, activated T-cells, germinal centre dendritic cells in tonsils, lymph nodes, and Peyer’s patches, as well as on non-haematopoietic cells such as vascular endothelial cells, thymic epithelial cells, certain other epithelial cells, and fibroblasts. The expression of ICAM-1 and two of its counter receptors, the lymphocyte function associated antigen-1 (LFA-1, CD11a/CD18) and the complement receptor type-3 (CR-3, MAC-1, CD11b/CD18) was shown to be essential for most of the lymphocyte/lymphocyte, lymphocyte/phagocyte, and leucocyte/endothelial cell interactions in the immune response. Moreover, ICAM-1 participates in the transient adhesion of leucocytes to the vascular endothelium and mediates, in part, granulocyte extravasation. Previous reports on fibroblasts and monocytic tumour cell lines, for example, have shown that inflammatory cytokines such as interleukin 1β (IL-1β), tumour necrosis factor α (TNF-α), and interferon γ (INF-γ) induce or enhance the expression of ICAM-1. In inflammatory bowel disease an increased expression of ICAM-1 on mucosal mononuclear phagocytes on colonic biopsy specimens was shown to be associated with the maintenance of chronic inflammation and the induction of ICAM-1 expression has been seen on bile duct epithelium, endothelium, and hepatocytes of liver allografts undergoing acute rejection. In previous reports an expression of ICAM-1 was also seen on fibrous tissue in the vicinity of carcinoma cells and on tumour infiltrating lymphoid cells. For melanoma, it has been shown that the de novo expression of ICAM-1 correlates with an increased risk of metastasis.

Most recently, a soluble form of the usually membrane bound ICAM-1 molecule was detected in human serum samples. The cellular source of soluble ICAM-1 (sICAM-1) in samples of healthy blood donors seemed to be from mononuclear cells, because sICAM-1 was only detectable in cell culture supernatants of lymphoid cell lines and peripheral blood mononuclear cell cultures. Raised values of sICAM-1 have been reported in samples of patients with melanoma, rheumatoid arthritis, systemic lupus erythematosus, metastatic cancer, and acute ulceration.

In this study, we show that de novo expression of ICAM-1 occurs in association with colonic carcinoma and that colonic carcinoma cells express both forms of ICAM-1, the usual membrane bound ICAM-1 on their cell surface and the soluble sICAM-1 as detected in the cell culture supernatants of colonic carcinoma cell lines. Enhanced sICAM-1 values were found in serum samples of patients with colonic carcinoma and active inflammatory bowel disease.

Materials and methods

CELL LINES, MEDIUM, REAGENTS, CYTOKINES, ANTIBODIES, AND SICAM-1 ELISA
The colonic carcinoma cell lines HT-29 and CaCo-2 were donated by Dr. L Old, Memorial Sloan-Kettering Cancer Center New York, USA, and Dr. Franke, Deutsches Krebsforschungszentrum Heidelberg, Germany.

All cell lines were cultured in CLICK-RPMI 1640 (CMRL) medium containing 10% basal medium supplement, Seromed (Berlin, Germany). Basal medium supplement is a medium supplement that contains defined amounts of salt, aminoacids, D-glucose,
vitamins, peptides, and growth factors as described in the company's catalogue. Recombinant IFN-γ was supplied by Boehringer (Mannheim, Germany); recombinant IL-1β from Behring (Marburg, Germany), and recombinant TNF-α from Thomae (Biberach, Germany). All three cytokines were expression products purified from recombinant Escherichia coli (E coli) strains. Incubation time and concentration of cytokines were chosen according to optimal responses known for the ICAM-1 upregulation on other tumour cell lines.

Monoclonal anti-ICAM-1 antibody mAb 7F7 was kindly provided by Dr M P Dierich (Innsbruck, Austria); as an additional control we used a different anti-ICAM-1 antibody, mAb 84H10, which was purchased from Dianova (Hamburg, Germany). The sICAM-1 enzyme linked immunosorbent assay (ELISA) used to determine sICAM-1 in the cell culture supernatants, in serum samples of healthy blood donors and patients was supplied by Bender Med Systems (Vienna, Austria). Diluted samples as well as undiluted and concentrated cell culture supernatants were assayed according to the protocol enclosed. Monoclonal antibody mAb R-24 recognizing the ganglioside GD3 on malignant melanoma cells was used as a negative control. Monoclonal antibody mAb W6/32 as positive control reactive with human histocompatibility antigen determinants was purchased from Sera Laboratories (Crawley Down, UK). For immunofluorescence, we used the GAM-FITC antibody 6602159 from Coulter Immunology (Hialeah, USA). The tests were performed in LAB-TEK slides as described earlier.

IMMUNOSTAINING OF ICAM-1 ON TISSUES AND CELLS

Cryostat sections and cells were tested by indirect immunoperoxidase assays using rabbit anti-mouse antibody P260 Dakopatts (Hamburg, Germany) and the substrate 3-amino-9-ethylcarbazol Sigma (Deisenhofen, Germany) as an indicator system as described elsewhere. Normal colonic tissue and tissues from inflammatory bowel disease and colorectal tumours were obtained from the department of surgery at our university.

To investigate the cell surface expression of ICAM-1 on colonic cancer cell lines, cells were detached from confluent cultures by 0·05% ethylenediaminetetraacetic acid in phosphate buffered saline, washed once with CMRL medium, resuspended in CMRL medium supplemented with 10% basal medium supplement, and adjusted to 10^5 cells per ml medium, as described elsewhere. CMRL medium (200 µl), containing 2×10^4 cells per well, was plated on LAB-TEK no 4808 tissue culture slides from VWR Scientific (Naperville, USA) in the presence or absence of the tested cytokines, and cultured for 24 hours at 37°C/5%CO_2 and high humidity. Cell surface expression was tested on unfixed cells and was performed according to the method described above.

RIBONUCLEIC ACID EXTRACTION AND NORTHERN BLOT ANALYSIS

Total ribonucleic acid was prepared from exponentially growing cells according to standard methods, assessed by measuring the absorbance at 260 nm, separated on a formaldehyde containing agarose gel, and blotted to nylon filters. Agarose gel electrophoresis, ribonucleic acid transfer, and hybridisation of blots were performed by standard techniques. The filters were probed with a 1·2 kb long Xba-1/Pst-1 restriction fragment of cDNA clone pICAM-1, kindly supplied by Dr B Seed (Boston, USA). The complementary DNA (cDNA) was labelled with P32-dATP using the random priming method and used at a concentration of 5×10^6 cpm of labelled cDNA per millilitre hybridisation solution. Hybridisation was performed at 65°C without formamide. The washing of the northern blots was carried out according to standard methods. The last washing step was performed in 0·3×SSC/0·1% SDS for one hour at 65°C. As previously described, the northern blot results were normalised by rehybridising the filters with a P32-labelled oligonucleotide ('5' ACGATCGAGTGGTATTCACC 3') that corresponds with the 28s ribosomal ribonucleic acid. This probe had been shown to be better than actin as a control for the amount and quality of total ribonucleic acid loaded. Kinase labelling, hybridisation, and washing of the blots was performed at 42°C according to standard procedures.

![Figure 1: Expression of ICAM-1 on normal colon, carcinoma, and ulcerative colitis. Cryostat sections were stained by mAb 7F7. (A) Colonic cancer: immunostaining of tumour cells, most prominent at the basement membrane. (B) Normal colon: no ICAM-1 staining. (C) Ulcerative colitis: immunostaining of inflammatory phagocytic cells.](http://gut.bmj.com/ on May 29, 2017 - Published by group.bmj.com)
Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells

Results

DE NOVO EXPRESSION OF ICAM-1 IN COLONIC TISSUES

The expression of ICAM-1 was examined on colonic epithelial tissues, cryostat sections of normal colon (12 specimens), of ulcerative colitis (2) and Crohn's disease (2), and 16 tumour tissues of patients with primary colorectal carcinoma were stained with both antibodies, mAb 7F7 and mAb 84H10. As shown in Figure 1A, a varying percentage (10–70%) of colonic carcinoma cells showed a strong staining at the basement membrane site of the tumour cells with both antibodies. In contrast, normal colon tissue (beside a marginal staining of the blood vessel endothelium) did not react with antibodies directed against ICAM-1 (Fig 1C). In tissue specimens of chronic inflammatory bowel disease ICAM-1 expression (Fig 1B) was only detectable on the inflammatory mononuclear cells, but not close to epithelial cells.

DETECTION OF ICAM-1 mRNA IN COLON CARCINOMA CELL LINES

Total ribonucleic acid preparations from the two colonic tumour cell lines were subjected to northern blot analysis to investigate whether they expressed mRNA for ICAM-1. Figure 2A shows that ICAM-1 mRNA was abundantly expressed in untreated HT-29 and CaCo-2 colonic cancer cells.

To find out whether cytokine treatment would modulate ICAM-1 expression in HT-29 and CaCo-2 cells, each of the cell lines was incubated for 24 hours in the absence or presence of IFN-γ (100 U/ml), IL-1β (100 U/ml), or TNF-α (10 ng/ml). The highest abundance of mRNA for ICAM-1 was obtained with IFN-γ in HT-29 cells. Figure 2A, representing one of three northern blot experiments performed, shows that a response to the cytokine treatment could be seen by the enhancement of ICAM-1 mRNA expression. In all ribonucleic acid preparations of ICAM-1 expressing cells, we always saw two hybridisation signals, a major signal at about 3-3 kb and a minor signal at about 2-4 kb, indicating the expression of the two previously reported ICAM-1 mRNA species. Whenever the expression of the 3-3 kb mRNA was enhanced, the 2-4 kb mRNA was changed to the same extent.

DETECTION OF ICAM-1 ON THE CELL SURFACE OF COLONIC CARCINOMA CELL LINES

To examine if the expression of mRNA was followed by the expression of the ICAM-1 molecule on the cell surface, cytokine treated and untreated HT-29 and CaCo-2 cells were

Figure 2: Northern blot analysis of total ribonucleic acid prepared from HT-29 and CaCo-2 cells after culturing for 24 hours in presence of IFN-γ (100 U/ml), IL-1β (100 U/ml), TNF-α (10 ng/ml) or in absence of cytokines (0). For each lane 20 µg of total ribonucleic acid were loaded. (A) 1, HT-29 (0); 2, HT-29 (IFN-γ); 3, HT-29 (IFN-γ); 4, HT-29 (IL-1β); 5, CaCo-2 (0); 6, Ca-Co-2 (IFN-γ); 7, CaCo-2 (IFN-γ). (B) Normalisation of the above shown northern blot using an oligonucleotide probe corresponding to 28S rRNA.
assayed with two different monoclonal antibodies directed against ICAM-1 (mAb 7F7 and mAb 84H10). Figure 3 shows the immunostaining of HT-29 cells, after incubation with IFN-\(\gamma\), with mAb 7F7. IFN-\(\gamma\) and TNF-\(\alpha\) induced enhanced ICAM-1 cell surface expression in HT-29 cells, while IFN-\(\gamma\) and IL-1\(\beta\) enhanced ICAM-1 expression on CaCo-2 cells.

DETECTION OF sICAM-1 SHEDDED BY COLONIC CARCINOMA CELLS
To investigate whether colonic carcinoma cells also shed the recently described soluble sICAM-1, culture supernatants were collected from conflually growing tumour cell lines after five days of culture and assessed in duplicate in an ICAM-1 specific ‘sandwich’ ELISA. The comparative amounts of sICAM-1 determined from undiluted cell culture supernatants were \(8.5\ ng/ml\) for HT-29 cells and \(13.5\ ng/ml\) for CaCo-2 cells. The medium control was constantly negative for sICAM-1. Therefore sICAM-1 is shed from both, HT-29 and CaCo-2 cells. After cytokine treatment of HT-29 and CaCo-2 cells, the values of sICAM-1 in some of the cell culture supernatants were raised for TNF-\(\alpha\) twofold, for IFN-\(\gamma\) fourfold in HT-29 cells, for IFN-\(\gamma\) and IL-1\(\beta\) about twofold in CaCo-2 cells.

Figure 4: (A) Enhanced sICAM-1 serum concentrations detected in serum samples of patients with colorectal carcinomas compared with healthy blood donors; (B) sICAM-1 in serum samples of patients with active and inactive Crohn's disease.

sICAM-1 was present in the normal serum samples at an average of 334 ng/ml, whereas the samples of colonic carcinoma patients contained sICAM-1 at an average of 684 ng/ml. In a Mann-Whitney-White analysis, these differences were shown to be highly statistically significant with \(\text{p}<0.001\) at confidence intervals of 95%. Some of the patients' samples showed extremely high sICAM-1 concentrations with up to 1-700 ng/ml while only few did not differ from the control group. We also saw a significantly increased concentration \(\text{p}<0.001\) of sICAM-1 in the serum samples of 15 patients with active Crohn's disease (average 804 ng/ml) compared with 10 patients with inactive disease (average 546 ng/ml) (see Fig 4B). Five patients with active ulcerative colitis also showed increased serum concentrations of sICAM (640 ng/ml).

Discussion
The data presented show that colonic carcinoma cells express ICAM-1 molecules on their cell surface in contrast with normal colonic epithelium. In a previous report on a de novo expression of ICAM-1 by mucosal mononuclear phagocytes in inflammatory bowel disease, the percentage of mononuclear phagocytes was increased from 7% in controls to 70% in ulcerative colitis and to 45% in Crohn's disease. These findings were confirmed in this study. According to the analysis of Maliza and our data, however, the source of soluble ICAM-1 seems to be different, in inflammatory bowel disease, the mononuclear phagocytes and in colonic cancer, the tumour cells. The de novo expression of ICAM-1 in phagocytes of the colonic mucosa and the raised soluble ICAM-1 in active Crohn's disease and ulcerative colitis shown here are consistent with a condition of immunological...
Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells

9 Barker JN, Allen MH, MacDonald DM. Distribution of intercellular adhesion molecule 1 (ICAM-1) and lympho-
antigen, a human adhesion molecule, identical to intercellular adhesion molecule 1 (ICAM-1) in human carcinomas and their stromal fibroblasts. *Int J Cancer* 1989; 43: 768–73.
19 Dippold W, Lloyd KO, Li LTC, Ikeda H, Oettgen HF, Old LJ. Cell surface antigens of human malignant melanoma: definition of six antigenic systems with monoclonal anti-
20 Dippold W, Klingel R, Kerlin M, Schwaabe W, Meyer zum Bruitschfelden K-H. Stimulation of pancreas and gastric carcinomas cell growth by interleukin 3 and granulocy-
Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells.

W Dippold, B Wittig, W Schwaeble, W Mayet and K H Meyer zum Büschenfelde

Gut 1993 34: 1593-1597
doi: 10.1136/gut.34.11.1593

Updated information and services can be found at:
http://gut.bmj.com/content/34/11/1593

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Colon cancer (1547)
- Crohn's disease (932)
- Ulcerative colitis (1113)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/