Mechanisms underlying the antireflux action of fundoplication

A C Ireland, R H Holloway, J Touli, J Dent

Abstract
The effect of fundoplication on patterns of gastrooesophageal reflux and the underlying motor mechanisms were investigated in 18 patients with symptomatic reflux. Oesophageal motility and pH and were recorded concurrently after a standard meal. Studies were performed preoperatively and from 5 to 27 months after surgery. Fundoplication virtually eliminated reflux in all but three patients. Control of reflux was associated with a 50% fall in the number of transient lower oesophageal sphincter relaxations, a fall in the proportion of transient lower oesophageal sphincter relaxations accompanied by reflux from 47% to 17%, and an increase in the mean residual pressure at the gastro-oesophageal junction during swallow induced lower oesophageal sphincter relaxation from 0-7 mm Hg to 6-0 mm Hg. Basal pressure at the gastro-oesophageal junction rose from 10-9 mm Hg to 14-5 mm Hg, however, there was no correlation between postoperative reflux and basal gastro-oesophageal junction pressure. These findings suggest that the anti-reflux effects of fundoplication result from changes in the mechanical behaviour of the gastro-oesophageal junction that result in incomplete abolition of the high pressure zone during lower oesophageal sphincter relaxation, and reduced triggering of transient lower oesophageal sphincter relaxations.

Gastroenterology Unit, Royal Adelaide Hospital
A C Ireland
R H Holloway
J Dent

Professorial Department of Surgery, Flinders Medical Centre, Adelaide, South Australia
J Touli

Correspondence to:
Dr R H Holloway, Gastroenterology Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000

Accepted for publication 10 August 1992

Summary of clinical details of patients

<table>
<thead>
<tr>
<th>Patient no</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Time after surgery (mth)</th>
<th>Endoscopy findings</th>
<th>Histology</th>
<th>Bernstein test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>66</td>
<td>11</td>
<td>Normal</td>
<td>ND</td>
<td>Pos</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>40</td>
<td>20</td>
<td>Normal</td>
<td>ND</td>
<td>Pos</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>59</td>
<td>5</td>
<td>Normal</td>
<td>Normal</td>
<td>Pos</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>38</td>
<td>5</td>
<td>Normal</td>
<td>ND</td>
<td>Pos</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>58</td>
<td>27</td>
<td>Normal</td>
<td>ND</td>
<td>Pos</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>38</td>
<td>16</td>
<td>Erosions</td>
<td>Hyperplasia</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>49</td>
<td>6</td>
<td>Erosions</td>
<td>Oesophagitis</td>
<td>Pos</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>27</td>
<td>8</td>
<td>Erosions</td>
<td>Oesophagitis</td>
<td>Pos</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>69</td>
<td>15</td>
<td>Erosions</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>50</td>
<td>5</td>
<td>Barrett's</td>
<td>Barrett's</td>
<td>ND</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>73</td>
<td>6</td>
<td>Barrett's</td>
<td>Barrett's</td>
<td>ND</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>55</td>
<td>15</td>
<td>Ulceration</td>
<td>Ulceration</td>
<td>ND</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>57</td>
<td>8</td>
<td>Ulceration</td>
<td>Ulceration</td>
<td>ND</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>67</td>
<td>10</td>
<td>Ulceration</td>
<td>Ulceration</td>
<td>ND</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>65</td>
<td>20</td>
<td>Normal</td>
<td>ND</td>
<td>Pos</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>57</td>
<td>5</td>
<td>Erosions</td>
<td>Ulceration</td>
<td>Pos</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>76</td>
<td>4</td>
<td>Ulceration</td>
<td>ND</td>
<td>Pos</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>58</td>
<td>17</td>
<td>Erosions</td>
<td>Oesophagitis</td>
<td>Pos</td>
</tr>
</tbody>
</table>

ND = not done; Pos = positive.

In most patients with reflux disease, reflux has been shown to occur mainly during transient lower oesophageal sphincter relaxations that are distinct from swallow induced lower oesophageal sphincter relaxations. The effect of fundoplication on the incidence and patterns of transient sphincter relaxations has not been reported. Swallow induced relaxation of the gastro-oesophageal junction has been found to be incomplete in patients with fundoplication. It has been suggested that this incomplete relaxation is relevant to the prevention of reflux. None of the studies, however, has included analysis of the spontaneous patterns of lower oesophageal sphincter function and mechanisms of reflux before and after fundoplication. In this study we examined the effect of fundoplication on spontaneous patterns of reflux and the motor mechanisms underlying the reflux episodes.

Methods

PATIENTS
We studied 18 patients, recruited between 1979 and 1981, with well documented symptomatic gastro-oesophageal reflux that was refractory to medical treatment. Symptomatic reflux was defined as erosive or ulcerative oesophagitis, and/or symptoms that were clearly related to oesophageal acidification during either spontaneous reflux, that was witnessed during concurrent postprandial oesophageal manometry and pH monitoring, or during a Bernstein test. Patients were judged to be refractory to medical management if they continued to complain of disabling symptoms or had persistent erosive or ulcerative oesophagitis despite aggressive medical treatment including cimetidine. The clinical details are summarised in the Table. Studies were performed before and from 4 to 28 months after fundoplication with an identical protocol. A similar surgical technique was used by the three senior surgeons who contributed to

Gut 1993; 34: 303–308
the study. Fundoplication was performed trans-abdominally using a complete wrap over a 52 French gauge bougie.

STUDY PROTOCOL
The study protocol was approved by the Ethical Review Committee of the Flinders Medical Centre. Patients fasted for at least 4 hours and refrained from smoking for a minimum of 6 hours before the study. Anticholinergic and antisecretory drugs were stopped 12 hours before the study. During the study the patients remained recumbent, either supine or lying on their side. Oesophageal manometry and pH were recorded concurrently during a 1 hour fasting period and for 4 hours after a standard meal consisting of soft meat or fish, mashed potatoes, cooked vegetables, ice cream and 180 ml of milk (2595 kJ). Patients were not allowed to doze, because of the effect of sleep on oesophageal motility and reflux patterns. After the monitoring period, relaxation of the gastro-oesophageal junction was assessed in response to swallowing of 10, 5 ml water boluses.

MANOMETRIC AND pH MONITORING TECHNIQUES
Oesophageal motility was monitored continuously using an eight lumen manometric assembly that incorporated a sleeve sensor. The sleeve was positioned so that it straddled the gastro-oesophageal high pressure zone. Two side holes, 1 and 3 cm below the distal margin of the sleeve, recorded intragastric pressure. Side holes at 2, 7, 14, and 21 cm proximal to the upper sleeve margin monitored motor activity of the oesophageal body. A side hole located in the pharynx monitored swallows. Each lumen was connected in-series with a pressure transducer and perfused with distilled water by a low compliance pneumohydraulic pump. The sleeve and gastric manometric channels were perfused at a rate of 0.5 ml/minute. The oesophageal body and pharyngeal channels were perfused at 0.13 ml/minute, a rate selected to yield reliable recognition of the occurrence of oesophageal body and pharyngeal contractions, yet to minimize changes in the pattern of oesophageal acid clearance or the rate of primary or secondary peristalsis.

Oesophageal pH was monitored with either a Beckman (no 39042) or a Microelectrodes (no MI-506) unipolar intraluminal pH electrode positioned 5 cm above the proximal margin of the gastro-oesophageal junction. The electrode was calibrated in buffers of pH 4 and 7 before and after each study. An electrode drift in excess of 0.6 pH units led to rejection of any study from the analysis. Correction for electrode drifts of <0.5 pH units was made on the assumption that the drift was linear during the study. Signals from the pressure transducers and pH meter (Electronic Instruments Ltd, no 2320) were processed and recorded on a Devices M19 chart recorder at a paper speed of 80 mm/minute.

DATA ANALYSIS
Only the 4 hour postprandial period was analysed. The oesophageal pH tracing was scored manually to determine the percentage of time the oesophagus was exposed to a pH <4. Reflux episodes were also identified and counted, being defined as either a drop of oesophageal pH below 4 for at least 4 seconds or, if oesophageal pH was already below 4, as a decrease of at least 1 pH unit sustained for at least 4 seconds.

Basal end-expiratory pressure at the gastro-oesophageal junction was determined at 15 minute intervals by taking a 1 minute visual mean of the tracing. Separate mean values were obtained for each patient. The completeness of relaxation of the gastro-oesophageal junction was evaluated at the end of the monitoring period by determining the difference between intragastric pressure and the nadir of gastro-oesophageal junction pressure during water swallow induced gastro-oesophageal junction relaxations.

The tracings were also analysed for transient lower oesophageal sphincter relaxations with the pH tracing masked. For the preoperative studies, transient lower oesophageal sphincter relaxations were defined as a sudden drop of pressure at the gastro-oesophageal junction of ≥5 mm Hg to within 2 mm Hg of intragastric pressure, not preceded by a pharyngeal swallow signal within the previous 5 seconds, and lasting longer than 5 seconds. For the postoperative studies, transient lower oesophageal sphincter relaxations were scored if the nadir pressure during relaxation was on or below the residual relaxation pressure determined during the water swallows. Separate note was made of those transient relaxations whose nadir pressures reached ≤2 mm Hg relative to intragastric pressure during the postoperative studies. The manometric tracings were also analysed for the pattern of pharyngeal and oesophageal motor function just before, and at the time of the onset of acid reflux using criteria applied previously. Statistical analyses of the rate of reflux episodes and the duration of oesophageal acid pressure were performed using Wilcoxon's signed rank test and the Mann-Whitney U test.

Basal gastro-oesophageal junction pressure measurements were analysed using analyses of variance, and swallow induced nadir pressures were compared using the paired t-test.

Results
GASTRO-oesophageal reflux
Fundoplication substantially reduced post-prandial oesophageal acid exposure from a mean of 19-9 (5-9)% to 2-3 (1-2)% (p<0-001, Fig 1). Fundoplication also significantly reduced the number of reflux episodes from a total of 327 (mean 18-2 (4-3)) before surgery to 53 (mean 2-9 (1-6)) after surgery (p<0-001). Reflux episodes occurred in only six of the 18 patients after surgery, and in only three was the distal oesophageal pH below 4 for more than 2% of the postprandial time (upper limit of normal <4%). Analysis of the motor events associated with the onset of reflux episodes showed that, before fundoplication, transient lower oesophageal
Mechanisms underlying the antireflux process

Such a mechanism was also prevalent in 18 of the patients. Although swallow induced lower oesophageal sphincter relaxation was the most prevalent mechanism overall, 92 of the 106 reflux episodes that occurred by this mechanism, occurred in only two patients. The distribution of the patterns of lower oesophageal sphincter function associated with reflux after surgery was similar to that preoperatively (Fig 2).

LOWER OESOPHAGEAL SPHINCTER RELAXATION

The mean nadir pressure at the gastro-oesophageal junction at maximum swallow induced lower oesophageal sphincter relaxation preoperatively was 0.7 (0.5) mm Hg, and rose to 6.0 (4.2) mm Hg after surgery (Fig 3).
of incomplete transient relaxations (r=0.58, p<0.05). Preoperatively, gastro-oesophageal reflux occurred during 47% of transient lower oesophageal sphincter relaxations. Postoperatively, this value fell to 19% of relaxations with a residual pressure of ≤2 mm Hg, and 15% of relaxations with residual pressures of >2 mm Hg.

Discussion

Over the past decade, combined manometric and pH recordings have shown that at rest virtually all reflux episodes in healthy subjects, and most reflux episodes in patients with reflux disease, occur during transient lower oesophageal sphincter relaxations, during which the high pressure zone at the gastro-oesophageal junction is abolished.\(^4\) These relaxations are clearly distinct from swallow induced lower oesophageal sphincter relaxations. The mechanics of anti-reflux surgery have not been evaluated in the light of this relatively new understanding of reflux mechanisms. In contrast to previous studies, we investigated the mechanism of action of fundoplication by examining its effect on spontaneous patterns of gastro-oesophageal reflux and the underlying lower oesophageal sphincter motor function. Our study confirms the potent antireflux effect of fundoplication, and shows further that this effect is associated with a reduction in the rate of transient lower oesophageal sphincter relaxations as well as the proportion of transient lower oesophageal sphincter relaxations accompanied by reflux, and an increase in the residual pressure at the gastro-oesophageal junction during sphincter relaxation.

A major effect of fundoplication was the substantial 50% reduction in the number of transient lower oesophageal sphincter relaxa-
Mechanisms underlying the antireflux

tions. This fall was evident despite a more liberal definition of transient lower oesophageal sphincter relaxations postoperatively. The estimates of the numbers of transient lower oesophageal sphincter relaxations were difficult to make postoperatively because our standard definition includes the stipulation that sphincter pressure drops to 2 mm Hg or less, relative to intragastric pressure. In the postoperative studies, there were 52 abrupt decreases in gastro-oesophageal junction pressure, that did not reach a nadir within 2 mm Hg of intragastric pressure, which satisfied criteria and so were scored as transient lower oesophageal sphincter relaxations. These relaxations had the distinctive temporal profile and patterns of associated oesophageal motility of transient lower oesophageal sphincter relaxations before fundoplication. Because the data from the present study and others indicate that fundoplication limits swallow induced lower oesophageal sphincter relaxation during water swallows by what seems to be a purely mechanical effect that is extrinsic to the sphincter, we modified the definition of transient lower oesophageal sphincter relaxations on the basis that the nadir pressure at the gastro-oesophageal junction during swallow induced sphincter relaxation represented complete lower oesophageal sphincter relaxation. We believe that this strategy is valid.

The mechanism by which fundoplication interferes with the triggering of transient sphincter relaxations has yet to be defined but some data support the view that it is the result of changes to the distensibility of the gastric cardia because of the fundic wrap. The trigger zones for transient lower oesophageal sphincter relaxations have been evaluated in the dog by Franzi et al., who found that the most potent one was around the cardia, an area that would be buttressed by the fundoplication. Furthermore, in dogs, limiting distension of the cardia by banding, reduces the rate of belching and, by implication, the rate of transient lower oesophageal sphincter relaxations during gas insufflation.

The other major effect of fundoplication was to prevent reflux from occurring during intervals of lower oesophageal sphincter relaxation. The proportion of transient sphincter relaxations accompanied by reflux fell from 47% to 17%, and there was a five fold reduction in the number of reflux episodes occurring during swallow induced lower oesophageal sphincter relaxation. Precisely how fundoplication changes lower oesophageal sphincter function to achieve this effect is unclear but a likely factor is prevention of complete abolition of the high pressure zone at the gastro-oesophageal junction during sphincter relaxation. Our data support the findings of previous studies that fundoplication renders swallow induced lower oesophageal sphincter relaxation and/or pressure abnormalities unrecording, but our findings also show that fundoplication has a similar effect on transient lower oesophageal sphincter relaxations. Additionally, virtually no reflux episodes occurred because of absent basal sphincter pressure, or a drift in pressure to zero after surgery, whereas these mechanisms accounted for 15% of reflux episodes preoperatively.

How may fundoplication alter the pattern of lower oesophageal sphincter relaxation? It may lead to an alteration in the neural signals to the lower oesophageal sphincter so that the resultant neural inhibition is insufficient to give complete relaxation. this is, however, a less attractive hypothesis than the possibility that fundoplication renders lower oesophageal sphincter relaxations to intragastric pressure. At the postoperative level, the primary change in its mechanics. In dogs, fundoplication is associated with the presence of a sphincter like high pressure zone in the region of the wrap even after excision of the lower oesophageal sphincter. The most likely explanation for these observations and our own is that the fundic wrap itself exerts extrinsic compression in addition to lower oesophageal sphincter pressure. In patients who have undergone fundoplication, therefore, it may be more appropriate to talk of gastro-oesophageal junction pressure than lower oesophageal sphincter pressure.

Incomplete lower oesophageal sphincter relaxation may not be the only mechanism preventing reflux. About 50% of the transient sphincter relaxations that occurred postoperatively had nadir pressures within 2 mm Hg of intragastric pressure, and thus were complete by preoperative criteria. The proportion of complete relaxations accompanied by reflux, however, fell substantially after fundoplication. The prevention of reflux during complete lower oesophageal sphincter relaxation suggests that there are other mechanical effects of fundoplication on sphincter function separate from that of simple extrinsic squeeze. In vitro studies suggest that the sphincteric length contributes to sphincter competence, and previous reports have suggested that fundoplication increases the length of sphincter exposed to intra-abdominal pressure. Postoperative studies, however, have not shown sphincter length to be important, either alone or in combination with basal lower oesophageal sphincter pressure, although an interaction between sphincter length and nadir sphincter pressure has not been examined. It must also be accepted that nadir pressures at the gastro-oesophageal junction during lower oesophageal sphincter relaxation are at the limits of resolution for manometry. Furthermore, undermeasurement by the sleeve sensor of the residual 1 mmHg or so during lower oesophageal sphincter relaxation could have resulted in the under-recording of small but physiologically significant residual pressures during what seem to be complete lower oesophageal sphincter relaxations.

Three patients could be regarded as operative failures with recurrent pathological reflux, although only one was symptomatic. Nevertheless, even though acid exposure was still abnormal, fundoplication substantially reduced the number of reflux episodes with associated with more prolonged acid clearance. The difference between the operative failure and success, therefore, seems to have been one of degree since fundoplication also reduced the number of transient lower oesophageal sphincter relaxations, albeit not to the same extent as in operative success. Importantly, however, the proportion
of transient lower oesophageal sphincter relaxations associated with reflux was not reduced, although there were too few events for statistical comparison. The reason for this is unclear as basal and nadir lower oesophageal sphincter pressures were similar to those in patients in whom reflux was controlled. Could the antireflux effect of fundoplication be related to other factors not measured in the present study? This remains a possibility. Some workers have supported the concept that fundoplication produces a simple, one way mechanical flap or flutter valve.11 12 19 21 Their observations, however, could also be explained on the basis of extrinsic compression of the lower oesophageal sphincter by the wrap.

Previously, investigations into the mechanism of action of fundoplication have been based on the hypothesis that effects on basal lower oesophageal sphincter pressure are relevant to the antireflux effect. This is an unappealing proposal in the light of what is now known about the mechanisms of gastro-oesophageal reflux.9 The hypothesis is not supported by the measurements themselves as neither postoperative basal gastro-oesophageal junction pressure nor change in basal pressure after fundoplication correlated with the success or failure of surgery.7 8 10 19

In summary, we have investigated the antireflux mechanism of fundoplication by examining its effects on spontaneous patterns of reflux and associated oesophageal motility. Our data suggest that fundoplication exerts complex mechanical effects on the gastro-oesophageal junction, the principal consequences of which are to inhibit the triggering of transient lower oesophageal sphincter relaxations and to prevent the complete relaxation of the gastro-oesophageal junction.

This study was supported by a grant from the Australian National Health and Medical Research Council. Dr Ireland was supported by a Travelling Fellowship from the Royal College of Physicians in Edinburgh. The results have been published previously in abstract form. Gastroenterology, 1982;82:1042.

We gratefully acknowledge the assistance of Jill Hanley in the preparation of the manuscript.

group.bmj.com on April 20, 2017 - Published by group.bmj.com
Mechanisms underlying the antireflux action of fundoplication.

A C Ireland, R H Holloway, J Toouli and J Dent

Gut 1993 34: 303-308
doi: 10.1136/gut.34.3.303

Updated information and services can be found at:
http://gut.bmj.com/content/34/3/303

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections
Gastro-oesophageal reflux (351)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/