Effect of ranitidine bismuth citrate on postprandial plasma gastrin and pepsinogens

A G Fraser, W M Lam, Y W Luk, J Sercombe, A M Sawyerr, M Hudson, I M Samloff, R E Pounder

Abstract

Ranitidine bismuth citrate was compared with an equipotent dose of ranitidine, to determine whether the former, by an anti-*Helicobacter pylori* activity, would counteract the rise of gastrin resulting from ranitidine's gastric acid antisecretory activity. Twenty four men with duodenal ulcers were studied before and on the 8th day of dosing with either ranitidine bismuth citrate 800 mg twice daily or ranitidine 300 mg twice daily (double blind, randomised, parallel groups). Fasting and postprandial plasma gastrin and plasma pepsinogen I and II concentrations were measured, and a 13C-urea breath test was performed before and on the 8th day of dosing. The 13C-urea breath tests were positive in 21 patients before dosing and remained positive in nine of nine of the ranitidine dosed patients, whereas only two of 12 patients treated with ranitidine bismuth citrate remained positive. The expected rise in meal stimulated plasma gastrin with ranitidine was seen in the 12 patients who received ranitidine but, despite suppression of *H pylori* urease activity in 10 of 12 patients taking ranitidine bismuth citrate, there was no attenuation of the meal stimulated gastrin rise. There was no significant difference in the mean derived (4 hour) plasma pepsinogen I and II concentrations after dosing with ranitidine or ranitidine bismuth citrate.

(Gut 1993; 34: 338–342)

Ranitidine bismuth citrate is a bismuth compound with gastric acid antisecretory activity; the drug is formed by reacting ranitidine with bismuth citrate; treatment with H2 receptor antagonists at conventional doses results in a modest increase in the plasma gastrin concentration; for example, dosing with ranitidine 300 mg at night resulted in a 58% increase in the 24 hour integrated plasma gastrin concentration on the 7th day of dosing. Higher doses cause a greater increase in the 24 hour plasma gastrin concentration inversely proportional to the antisecretory effect; for example, on the 7th day of dosing with ranitidine 300 mg twice daily, the 24 hour plasma gastrin concentration increased by 165% compared with baseline. Ranitidine bismuth citrate is being developed, among other indications, for the treatment of duodenal ulcer patients most of whom have *Helicobacter pylori* in their gastric mucosa. *H pylori* infection is associated with a reversible increase in the 24 hour plasma gastrin concentration and plasma pepsinogen I (PG I) and pepsinogen II (PG II) concentration. The postprandial plasma gastrin response and the raised PG I and PG II concentrations are reduced by eradication of *H pylori*. Most bismuth compounds have significant inhibitory effects on *H pylori*, although eradication is uncommon after dosing with bismuth alone. The object of the present study was to compare the effect of dosing with either ranitidine, or ranitidine bismuth citrate, on postprandial gastrin and pepsinogen release in *H pylori* infected duodenal ulcer patients.

Methods

Twenty four men with a history of *H pylori* positive duodenal ulceration, confirmed by endoscopy and antral biopsy specimens in the preceding four years were studied. Patients with other significant diseases or with a history of alcohol abuse were excluded. Patients who had received a bismuth compound within the past 3 months or an antisecretory drug within 2 weeks before the study were also excluded.

The patients were investigated using a randomised, double blind parallel group design; they were studied before and on the 8th day of dosing with either ranitidine bismuth citrate 800 mg twice daily (GR 122311X: Glaxo Group Research Ltd, Ware, UK), or ranitidine 300 mg twice daily (as ranitidine hydrochloride; Glaxo Group Research Ltd). Ranitidine bismuth citrate 800 mg contains the equivalent of ranitidine 300 mg as the hydrochloride. On each study morning, the fasting patients had a baseline blood sample of 0800 hours, followed by a standard breakfast at 0815 hours; hourly blood samples were taken until 1200 hours. The blood samples were centrifuged immediately and two plasma samples were stored at −20°C for each time interval. The plasma gastrin concentration was analysed at Royal Postgraduate Medical School (Professor Bloom's laboratory) by radioimmunoassay. Duplicate samples were coded and shipped in dry ice to Los Angeles where they were analysed for PG I and PG II by radioimmunoassay.

At 1200 hours, a 13C-urea breath test was performed by a standard protocol. Briefly, a baseline breath sample was taken, and the patient given 100 mg of 13C-urea 10 minutes after a high fat liquid meal (100 ml). Exhaled breath samples were pooled in a large bag at 5 minute intervals from 10 to 40 minutes after giving the 13C-urea. The ratio of 13CO2 to 13CO2 in the baseline and post 13C-urea expired air samples were measured by mass spectrometry with cryogenic extraction of the CO2, using a dual inlet ratio mass spectrometer (BSIA, Brentford, Middlesex). The results for excess 13CO2 are expressed as parts per 1000 per ml; the baseline pre 13C-urea breath
Ranitidine bismuth citrate, plasma gastrin, and pepsinogens

Ranitidine

Figure 1 with either duodenal gastrin or broken line.

Figure 2 a)

"0m a)

C, fin E

Excess "CO₂ correlation between dosing with ranitidine bismuth citrate 800 mg twice daily and the ¹³C-urea breath test was examined by regression analysis. The study was approved by the Ethical Practices Subcommittee of Hampstead Health Authority, and each patient provided written, informed consent.

Results

All 24 patients completed the study. No serious adverse events were reported. Two patients taking ranitidine bismuth citrate reported minor events; one had moderate diarrhoea and associated pruritus ani and one had nausea, but neither withdrew from treatment. The demographic features of the two patient groups are described in Table I. The weight, height, alcohol intake, smoking habits, and medication (within the previous 6 months) were similar for the two groups, but there was a significant difference between the ages of the two groups (p=0.02).

Breath test results were available in only 23 patients. Twenty one patients had a positive ¹³C-urea breath test (but two patients were breath test negative and both were in the ranitidine group). One of these patients had received triple therapy unknown to the investigators and the other had a low density of H pylori like bacteria in his original gastric biopsy specimen. A repeat breath test by the latter patient 4 months after the study was also negative and a repeat endoscopic biopsy specimen showed no evidence of H pylori like bacteria. The ¹³C-urea breath test remained positive in all nine patients taking ranitidine 300 mg twice daily and the ¹³C-urea breath tests in the two patients with negative tests remained negative; the median excess ¹³C₂ was 18·8 (range 9·0–32·5) and 9·7 (9·0–27·9) before and on the 8th day of dosing respectively (Fig 1). There was a fall in the excess ¹³C₂ in all 12 patients taking ranitidine bismuth citrate; 10 of these patients had a post dosing excess ¹³C₂ within the accepted range for H pylori negative patients. The median excess ¹³C₂ fell from 29·7 (range 14·4–50·4) before dosing to 3·2 (1·4–16·2) on the eighth day of dosing respectively. There was a significant correlation between the pre-dosing derived plasma gastrin response and predosing excess ¹³C₂ (Fig 2, r=0·64, p=0·001).

The mean fasting plasma gastrin concentration before dosing with ranitidine was 11 pmol/l and 13·0 pmol/l on the 8th day of dosing; the respective values before and during dosing with ranitidine bismuth citrate were 18·0 and 21·3 pmol/l. The mean derived plasma gastrin response increased from 15·9 pmol/l (range 8·2–28·2) before dosing to 26·8 pmol/l (range 12·8–51·1) on the 8th day of dosing with ranitidine. The mean derived plasma gastrin response increased from 27·1 pmol/l (range 11·0–99·3) before dosing to 39·3 pmol/l (range 22·5–70·8) on the eighth day of dosing with ranitidine bismuth citrate (Fig 3). Since this was a randomised, double blind study the disparity at baseline is attributed to chance. If the post treatment values

| TABLE I Patient characteristic in both groups (Values median (range)) |
|-----------------|-----------------|-----------------|
| Ranitidine bismuth citrate group (n=12) | Ranitidine group (n=12) |
| Age (years) | 55* (31–64) | 37* (23–66) |
| Weight (kg) | 77 (57–99) | 74 (62–92) |
| Height (cm) | 170 (155–183) | 175 (165–181) |
| Smoking (cigarettes/day) | 5 (0–30) | 2 (0–25) |
| Alcohol intake (units/week) | 4 (0–16) | 4 (0–16) |
| Previous H₂ receptor antagonist or omeprazole (within last 3–6 weeks) | 8 | 9 |
| Helicobacter pylori positive at time of study (¹³C urea breath test) | 12 (9) (1 unknown) | 12 (2 negative) |

*p=0·02

Sample is subtracted from the post ¹³C-urea sample.

Plasma gastrin and plasma PGI and PGIi concentrations were logarithmically transformed before analysis. Derived 4 hours weighted means were calculated using trapezoidal integration and dividing the resulting area under the curve by the time interval. These responses were analysed by analysis of covariance using the pre-dose weighted mean value as the baseline covariate. The relation between the derived plasma gastrin and the ¹³C-urea breath test was examined by regression analysis. The study was approved by the Ethical Practices Subcommittee of Hampstead Health Authority, and each patient provided written, informed consent.

Figure 1: The excess ¹³C₂ (intragastric urease activity) before and on the 8th day of dosing with either ranitidine 300 mg twice daily or ranitidine bismuth citrate 800 mg twice daily in 23 duodenal ulcer patients. The range for Helicobacter pylori negative subjects is below the broken line (excess ¹³C₂<5).

Figure 2: The correlation between the excess ¹³C₂ before dosing and the derived 4 hour plasma gastrin concentration in 23 duodenal ulcer patients (r=0·64, p=0·001).
The 24 patients showed a small but significant increase in the plasma PG I concentration after eating the standard breakfast. The median plasma PG I concentration rose from a baseline of 89.7 μg/l to 98.0, 100.3, 101.3, and 96.9 μg/l at 0900, 1000, 1100, and 1200 hours, respectively (p<0.005 for all time intervals). The mean derived plasma PG I concentration was unchanged on the 8th day of dosing with either ranitidine 300 mg twice daily (84.3 ± 82.7 μg/l) or ranitidine bismuth citrate 800 mg twice daily (97.3 ± 84.9 μg/l) (Fig 4). The ratio of the treatment response (ranitidine bismuth citrate to ranitidine) was 0.90 (95% CI 0.77–1.05, p value=0.16; Table II). There was no significant difference in the mean derived plasma PG II concentration after dosing with either ranitidine (12.8 μg/l and 13.6 μg/l before and after treatment, respectively) or ranitidine bismuth citrate (17.3 μg/l and 15.9 μg/l before and after treatment respectively, (Figure 5). The ratio of the treatment response (ranitidine bismuth citrate to ranitidine) was 0.90 (95% CI 0.77–1.05, p value=0.16; Table IV).

Discussion

Ranitidine bismuth citrate suppresses *H pylori* urease activity on the 8th day of dosing. All 12 patients had a significant fall in intragastric urease activity and 10 of 12 had a excess 'C-Urea value within the range accepted for *H pylori*-negative subjects on the 8th day of dosing.1 This prompt fall in intragastric urease activity seems to be similar to that achieved with other bismuth compounds.18 The systemic absorption of the bismuth in ranitidine bismuth citrate is less than after dosing with tripotassium dicitrato bismuthate.13-18 The effective anti-*H pylori* activity of ranitidine bismuth citrate, and that of more poorly absorbed bismuth compounds such as bismuth subasalicylate, suggests that systemic absorption is not required.18 There was no significant change in the *H pylori* urease activity after dosing with ranitidine 300 mg twice daily for 7 days. Dosing with ranitidine resulted in the expected increase in the postprandial plasma gastrin concentration, which is consistent with, and inversely correlated to, its antisecretory activity.1 There was no significant change in the plasma PG I or PG II concentration after 7 days of dosing with ranitidine.

The expected ablation of the meal stimulated increase in plasma gastrin was not observed after dosing with ranitidine bismuth citrate. The 'C-Urea breath test is reproducible and provides an

Table II. Mean plasma gastrin and pepsinogen (PG) I and II concentrations before and after dosing

<table>
<thead>
<tr>
<th>Plasma gastrin (pmol/l)</th>
<th>Plasma PG I (μg/l)</th>
<th>Plasma PG II (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predose</td>
<td>Postdose</td>
<td>Adjusted</td>
</tr>
<tr>
<td>Ranitidine bismuth citrate (RBC)</td>
<td>27.1</td>
<td>39.3</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>15.9</td>
<td>26.8</td>
</tr>
<tr>
<td>Ratio (RBC/ranitidine)</td>
<td>1.082</td>
<td>0.95</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.85, 1.36)</td>
<td>(0.77, 1.45)</td>
</tr>
</tbody>
</table>

Predose and postdose are geometric means.
†Adjusted postdose geometric means; adjusted to predose concentration.
‡p<0.05
§p=0.16
**p=0.05
***p=0.016

Figure 3. The derived 4 hour plasma gastrin concentration before and on the 8th day of dosing with either ranitidine 300 mg twice daily or ranitidine bismuth citrate 800 mg twice daily in 24 duodenal ulcer patients.

Figure 4. The derived 4 hour plasma pepsinogen I concentration before and on the 8th day of dosing with either ranitidine 300 mg twice daily or ranitidine bismuth citrate 800 mg twice daily in 24 duodenal ulcer patients.

The derived plasma gastrin response to ranitidine bismuth citrate (800 mg twice daily) was significantly higher than that of ranitidine (300 mg twice daily) (Fig 3). The derived plasma pepsinogen I response to ranitidine bismuth citrate (800 mg twice daily) was also significantly higher than that of ranitidine (300 mg twice daily) (Fig 4).
easy, non-invasive measure for the detection of *H. pylori,* but a negative value while a patient is taking bismuth does not indicate that the organism has been eradicated from the gastric mucosa. Based on the action of other bismuth compounds, it is likely that the effect of ranitidine bismuth citrate on the C-urea breath test reflects suppression of urease activity and not eradication of the infection. The present study suggests that suppression of *H. pylori* urease activity does not change the abnormal mechanism, as yet unknown, which causes the increase in the plasma gastrin concentration. This conclusion is supported by other studies which showed that when ammonia production is increased by giving an oral dose of urea, or decreased by the urease inhibitor acetohydroxamic acid, the plasma gastrin concentration does not increase or decrease respectively.

The *H. pylori* related increase in the plasma gastrin concentration may be caused by the presence of the bacterium (or its bacterial products), or alternatively may be the result of *H. pylori* induced gastritis, and eradication may be necessary to normalise the plasma gastrin response. Bismuth compounds have a pronounced bactericidal effect against *H. pylori* both in vitro and in vivo, and the degree of gastritis lessens in most patients during a 2 to 4 week course of bismuth salicylate, but this improvement may be less than that demonstrated after eradication. Although Chittajal et al showed that there was a significant reduction in the polymorphonuclear cell infiltrate in the antral mucosa 24 hours after starting tripotassium dicitrate bismuthate together with metronidazole and amoxicillin, the chronic inflammatory infiltrate may take several months to resolve after eradication. This study suggests that partial resolution of the acute inflammatory infiltrate by a bismuth compound does not result in a reduction of the meal stimulated plasma gastrin response.

The lack of effect of ranitidine or ranitidine bismuth citrate on basal and meal stimulated PG I and II concentrations was also unexpected. This absence is in contrast to the two-to-four fold increase of plasma PG I after dosing with omeprazole, particularly in *H. pylori* positive subjects. The small but delayed postprandial increase in PG I concentration was also reported by Waldum et al. The mechanism of this increase is also unknown; gastritis and back-diffusion of the zymogens or a direct stimulation of secretion by a bacterial product of *H. pylori* are possible explanations.

The time required for the resolution of plasma gastrin to normal and the reduction of plasma pepsinogens after eradication is uncertain. The plasma gastrin and pepsinogen concentrations were significantly reduced 6 weeks after complete eradication of *H. pylori* in a study of asymptomatic *H. pylori* infected subjects and 4 weeks after completing treatment in a study of duodenal ulcer patients, but had not changed 24 hours after beginning eradication treatment in another study of duodenal ulcer patients. More prolonged dosing with ranitidine or ranitidine bismuth citrate might have resulted in significant differences in the postprandial plasma gastrin and plasma pepsinogen concentrations.

The study was supported by a grant from Glaxo Group Research Ltd. The manuscript was prepared by Ms. Doris Elliott.

Figure 5: The derived 4 hour plasma pepsinogen I concentration before and on the 8th day of dosing with either ranitidine 300 mg twice daily or ranitidine bismuth citrate 800 mg twice daily in 24 duodenal ulcer patients.
18 Prewett EJ, Luk YW, Fraser AG, Lam WM, Pounder RE. Comparison of one day dosing with three different formulations of bismuth compounds. Aliment Pharmacol Ther 1992; 6: 97–102.
19 Lacy LF, Fraser NM, Keene ON, Smith JTL. Bismuth pharmacokinetics in healthy male subjects after twice daily oral dosing for 10 days with ranitidine bismuth citrate, tripotassium dicitratobismuthate (DeNolTab), or placebo. Gut 1991; 32: A1217.
Effect of ranitidine bismuth citrate on postprandial plasma gastrin and pepsinogens.

A G Fraser, W M Lam, Y W Luk, J Sercombe, A M Sawyerr, M Hudson, I M Samloff and R E Pounder

Gut 1993 34: 338-342
doi: 10.1136/gut.34.3.338