Alcohol and gastric acid secretion in humans

S Chari, S Teyssen, M V Singer

Abstract

The secretory response of gastric acid to pure ethanol and alcoholic beverages may be different because the action of the non-ethanolic contents of the beverage may overwhelm that of ethanol. Pure ethanol in low concentrations (≤5% vol/vol) is a mild stimulant of acid secretion whereas at higher concentrations it has either no effect or a mildly inhibitory one. Pure ethanol given by any route does not cause release of gastrin in humans. Alcoholic beverages with low ethanol content (beer and wine) are strong stimulants of gastric acid secretion and gastrin release, the effect of beer being equal to the maximal acid output. Beverages with a higher ethanol content (whisky, gin, cognac) do not stimulate gastric acid secretion or release of gastrin. The powerful stimulants of gastric acid secretion present in beer, which are yet to be identified, are thermotable and anionic polar substances. The effect of chronic alcohol abuse on gastric acid secretion is not as predictable. Chronic alcoholic patients may have normal, enhanced, or diminished acid secretory capacity; hypochlorhydria being associated histologically with atrophic gastritis. There are no studies on the acute effect of alcohol intake on gastric acid secretion in chronic alcoholic patients. The acid stimulatory component of beer and wine needs to be characterised and its possible role in the causation of alcohol-induced gastrointestinal diseases needs to be investigated.

(Gut 1993; 34: 843–847)

Despite widespread interest in gastrointestinal diseases induced by alcohol the effects of acute and chronic exposure of the stomach to alcohol remain to be fully elucidated. A review of publications shows diverse and even contradictory results. For example, Lenz et al. found 5% and 10% ethanol to significantly stimulate gastric acid secretion whereas Singer et al. did not find any stimulatory effect. An explanation for these contradictions can often be traced to the experimental conditions of the different studies. Here we review the studies on the effect of ethanol and alcoholic beverages on gastric acid secretion in humans and discuss the possible reasons for the apparently discrepant results. We also consider the areas that need further research. There is considerable species variation in the response of the stomach to alcohol and so animal studies will be cited only where data from humans are inadequate.

Effects of acute exposure of non-alcoholic subjects to alcohol on gastric acid secretion

The effect of pure ethanol on gastric acid secretion has been investigated by several workers. Early uncontrolled experiments suggested that alcohol had a stimulatory effect on gastric acid secretion; thus an 'ethanol test meal' was introduced to clinically evaluate acid secretory state in humans. Recent controlled studies have served to clarify the different aspects of the interaction between alcohol and gastric acid secretion. Gastric acid secretion is influenced by a number of factors such as pH, volume, osmotic activity, and caloric value of the infusate. The ideal osmotic control for ethanol is distilled water and not hypertonic glucose or saline as has been used in some studies. This is because ethanol is a non-electrolyte of small molecular weight that diffuses rapidly in and through biological membranes. Consequently the effective osmotic pressure that it exerts on biological membranes is far less than its osmotic pressure measured by an osmometer. Distilled water has an identical effect and is pharmacologically inactive. It is, therefore, considered the ideal osmotic control for ethanol (for detailed discussion see). Because alcohol is also a source of energy (1 g of ethanol provides 7.1 kcal), it is necessary to have an additional caloric control. An equicaloric glucose solution is used for this purpose. To compare the effect of different substances on gastric acid secretion proper control solutions comparable with the test solution should be used. Unfortunately, not all studies have used proper controls and this may account for some of the contradictory results reported.

Effect of pure ethanol on gastric acid secretion

Intravenous infusion of different doses of ethanol has been consistently shown to stimulate gastric acid secretion. Hirschowitz et al. infused 10, 20, and 40 ml of alcohol intravenously for thirty minutes and found a pronounced and dose-dependent increase in acid secretion. Demol et al. found a 2-2-fold increase in output of gastric acid on infusion of 300 mg/kg of ethanol for 30 minutes followed by continuous infusion of 3 mg/kg/min for two hours. The dose used is comparable with those used by Hirschowitz et al. Interestingly, Kölbl et al., who used a higher initial dose of 600 mg/kg ethanol, found only a 55% increase in acid secretion. If a dose dependent increase in gastric acid secretion occurs in response to intravenous infusion of ethanol it must be in the lower dose range. With higher doses there seems to be a
negative effect on gastric acid secretion, the mechanism for which is not clear.

Studies on the effect of enteral infusion of ethanol have produced strikingly different results (Table I). Early studies by Cooke et al. showed that ethanol in concentrations of 1% to 20% did not stimulate gastric acid secretion. Lenz et al. used intragastric titration to measure acid output and hypertonic solutions of glucose saline as controls and found that 5% and 10% ethanol significantly increased three hour acid secretion whereas 20% ethanol had a mild but insignificant stimulatory effect. Subsequent studies have not, however, been able to show the stimulatory effect of 5% and 10% ethanol. In a well controlled study with isovolumetric, isosmotic and isocaloric controls Singer et al. studied the effect of intragastric bolus infusion of 1-4%, 4%, 5%, 6%, 7%, 8%, 10%, 20%, and 40% ethanol. By intragastric titration 1-4% and 4% ethanol were found to have a stimulatory effect on gastric acid secretion with a response equal to 23% and 22% respectively of the pentagastrin stimulated incremental acid output (maximal acid output–basal acid output). The higher concentrations of ethanol studied had either no effect or a mildly inhibitory one. Petersen et al. under similar controlled conditions found that slow intragastric infusion (28 g/h) of pure ethanol at concentrations of 5%, 12%, and 36% had no effect on gastric acid secretion. Thus we conclude that intravenous ethanol, at least in the doses used, and intragastric infusion of low concentrations (up to 5%) of ethanol stimulate gastric acid secretion whereas intragastric infusion of higher concentrations has either no effect or a mildly inhibitory one.

Effect of alcoholic beverages

Interestingly, the findings of the oral ethanol ingestion experiments are exaggerated when alcoholic beverages are studied (Table II). Oral and intragastric infusions of beer were found to be potent stimuli of gastric acid secretion, with a response of over 95% of that provoked by pentagastrin. This response was fourfold stronger than that produced by 4% ethanol. Intrajejunal administration of beer also stimulated acid secretion, although the response was less than that to intragastrically infused beer. Wine too proved to be a good stimulant of acid secretion, although not as good as beer, whereas 10% ethanol had no effect. Beverages with higher alcohol content such as whisky and cognac did not stimulate acid secretion.

Effect of acute exposure to alcohol on gastric release

This aspect has been systematically studied by a number of workers including our group and allows some firm conclusions to be drawn. There is no direct correlation between acid secretion and gastrin release in response to alcohol (Table III). The facts that seem to emerge from analysis of the recent controlled studies are: (a) pure ethanol given intravenously, orally, or by an intragastric route, in different concentrations does not stimulate gastrin release whether or not it stimulates acid secretion; (b) among the alcoholic beverages beer and wine produce pronounced stimulation of gastrin release whereas whisky, gin, cognac, and vodka do not have any effect on gastrin concentrations. Here it is interesting to note that intrajejunal beer stimulated acid release without causing gastrin release. The fact that the beverages with low alcohol content stimulate gastrin release whereas alcohol itself does not do so suggests that this response is mediated by the non-ethanolic component of the beverage.

Mechanism of action of alcohol on gastric acid secretion

It is clear that ethanol has a dual action on the secretory function of the gastric parietal cell; at low concentrations it stimulates gastric secretion and at high concentrations it has no effect or an inhibitory one. Studies have been done on humans, intact animals, isolated gastric mucosa, and gastric cell cultures to study the effect of ethanol on gastric cell function. The cellular mechanism of action of ethanol, however, remains to be fully elucidated.

Pure ethanol does not stimulate gastrin release in humans. Ethanol has a systemic as well as topical action on the gastric parietal cell. The persistence of the acid secretory response even after complete gastrectomy of ethanol administered by an intragastric route and the stimulatory action of intravenous ethanol imply a systemic action. The response to intravenous ethanol seems to be at least partially mediated by cholinergic nerves. After premedication with atropine intravenous ethanol failed to stimulate acid secretion. Atropine given during intravenous infusion led to an immediate fall in acid output. Kölbel et al. also found that atropine significantly reduced but did not abolish the
effect of intravenous ethanol. Similar studies need to be done to evaluate the role of the cholinergic nerves in the gastric response to intragastric ethanol. A topical stimulatory action of ethanol on gastric acid secretion is seen at low concentrations (1%–5%). Studies with intragastric titration have noted an immediate acid secretory response to ethanol instillation before systemic absorption can occur. This action is independent of extrinsic innervation. In a recent study Chacin et al. recorded the effect of different concentrations of ethanol and some alcoholic beverages on the isolated toad gastric mucosa. The responses were similar to those reported from human studies. They found that low concentrations (1%–5%) of ethanol significantly stimulated acid secretion and cell respiration. The effect on cell respiration persisted even after blockade of the proton pump suggesting that this effect was primary and not secondary to stimulation of acid secretion. Low concentrations (1%–5%) of ethanol caused an increase in the content of cyclic AMP in human corporeal gastric mucosa in vitro. They also caused a dose dependent increase in activity of histamine sensitive gastric adenylate cyclase in guinea pig gastric mucosa. Thus ethanol, apart from having an overall stimulatory effect on gastric parietal cell metabolism, seems to specifically stimulate gastric acid secretion through an increase in cyclic AMP and subsequently adenylate cyclase.

The mediator for the action of ethanol on the parietal cell is not known. Histamine has long been considered a putative mediator of the gastric acid secretory response to ethanol. The stimulatory effect of ethanol on isolated dog gastric mucosa was partially inhibited (~50%) but not abolished by cimetidine, suggesting that the stimulatory action of low concentrations of ethanol on the gastric parietal cell is partly mediated through activation of H₂ receptors. It is possible that ethanol liberates histamine from cells containing histamine in the gastric mucosa. Earlier studies with less accurate methods for measurement of histamine, however, failed to detect increase in histamine in the gastric tissue or venous or arterial blood after stimulation with ethanol. These studies need to be repeated with presently available more accurate methods for assay of histamine. In the human stomach histamine is stored predominantly in the mast cells. It would be interesting to see if ethanol stimulates release of histamine from mast cells in culture. Because it is also present in some beverages histamine was thought to be responsible for the acid secretory capacity of the beverages. In our study, however, we found no stimulatory action when the amines present in beer were given at doses present in the beverage. The concentration seems to be too low to influence gastric acid secretion. In the study by Chacin et al. quoted earlier the stimulatory action of ethanol persisted even in calcium free solutions implying that extracellular calcium is not essential for its action. Parietal cell cultures could also be used to study the interaction between ethanol and the receptors for acetylcholine, gastrin, and prostaglandins. Further studies are clearly needed to fully elucidate the effect of ethanol on the gastric parietal cell.

The exact reason why beverages with higher ethanol content do not stimulate acid secretion is also not known. This could be due to several factors:

(a) Their inability to stimulate gastrin release. This could itself be due to a direct damaging or inhibitory effect on antral G cells or a lack of substances present in beer and wine that stimulate gastrin release. To see whether it is the high alcohol concentration or the possible lack of stimulants or their inability to act in the presence of high alcohol concentrations that is responsible for the absence of stimulatory action it would be interesting to study the effect of a simultaneous intragastric infusion of beer and

TABLE III Effects of ethanol and alcoholic beverages on gastrin release in non-alcoholic humans

<table>
<thead>
<tr>
<th>Test solution</th>
<th>Dose</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>80 to 500 ml of 1.4 to 40%</td>
<td>No effect</td>
<td>1, 2, 10–12, 15–17, 20</td>
</tr>
<tr>
<td>Beer</td>
<td>250 and 500 ml</td>
<td>Strong release</td>
<td>2, 13–17, 21</td>
</tr>
<tr>
<td>Wine</td>
<td>240, 300, and 500 ml</td>
<td>Strong release</td>
<td>1, 2, 12, 15–17</td>
</tr>
<tr>
<td>Whisky</td>
<td>125 and 150 ml</td>
<td>No effect</td>
<td>2, 11, 15</td>
</tr>
<tr>
<td>Gin</td>
<td>125 ml</td>
<td>No effect</td>
<td>16, 17</td>
</tr>
<tr>
<td>Cognac</td>
<td>125 ml</td>
<td>No effect</td>
<td>2</td>
</tr>
<tr>
<td>Vodka</td>
<td>60 and 250 ml</td>
<td>No effect</td>
<td>18, 19</td>
</tr>
</tbody>
</table>

TABLE IV Acute effects of intragastric administration of beer, its preproducts (*), beer extracts, and components of fermented glucose on gastric acid secretion and gastrin release

<table>
<thead>
<tr>
<th>Test substance</th>
<th>Effect on acid secretion</th>
<th>Effect on gastrin release</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer</td>
<td>>93% of MAO</td>
<td>119% of the response to protein rich meal</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>New beer*</td>
<td>>76% of MAO</td>
<td>110% of beer</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>Finishing wort</td>
<td>46% of MAO</td>
<td>56% of beer</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>Hop extract*</td>
<td>No effect</td>
<td>No effect</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>First wort*</td>
<td>48% of MAO</td>
<td>49% of beer</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>Components of beer (ethanol, amines, phenols Mg, Ca, L-amino acids, vitamins, organic acids, purines, pyrimidines)</td>
<td>No significant effect</td>
<td>No significant effect</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>L-ophenylalanine</td>
<td>pH dependent</td>
<td>No data</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>pH 2–5</td>
<td>67% of beer</td>
<td>67% of beer</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>pH 7–9</td>
<td>53% of beer</td>
<td>53% of beer</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>pH 11–0</td>
<td>Na effect</td>
<td>No effect</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>Dialysed beer (Mol wt of contents >1000)</td>
<td>No effect</td>
<td>No effect</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>Unfermented glucose</td>
<td>Equal to that of beer</td>
<td>114% of beer</td>
<td>Singer et al.</td>
</tr>
<tr>
<td>Fermented glucose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents of fermented glucose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polar substances</td>
<td>112% of MAO</td>
<td>108% of FG</td>
<td>Teyssen et al.</td>
</tr>
<tr>
<td>Semipolar substances</td>
<td>No effect</td>
<td>No effect</td>
<td>Teyssen et al.</td>
</tr>
<tr>
<td>Anions</td>
<td>61% of MAO</td>
<td>87% of FG</td>
<td>Teyssen et al.</td>
</tr>
<tr>
<td>Cations</td>
<td>No effect</td>
<td>No effect</td>
<td>Teyssen et al.</td>
</tr>
<tr>
<td>Neutral phase of anion-cation resin combination</td>
<td>No effect</td>
<td>No effect</td>
<td>Teyssen et al.</td>
</tr>
<tr>
<td>Thermocatalytic substances</td>
<td>83% of MAO</td>
<td>No data</td>
<td>Teyssen et al.</td>
</tr>
</tbody>
</table>

MAO = Maximal acid output; FG = fermented glucose.

Downloaded from http://gut.bmj.com/ on April 12, 2017 - Published by group.bmj.com
whisky. A lack of response would suggest that
the high concentration of alcohol is the principal
factor. The effect of alcohol and the beverages on
antral G cells also needs further study.

(b) Damage to or inhibition of the gastric
parietal cell. Davenport\(^5\) found that ethanol
solutions with a concentration above 10% pro-
duced mucosal damage. Beverages with concen-
trations above that in wine (10%-12%) failed to
release gastrin or to stimulate acid. Therefore,
if it is possible that back diffusion of H\(^+\) ions secon-
dary to disruption of the mucosal barrier plays a
part in the failure of these beverages to stimulate
acid secretion. In the study by Chacin et al\(^6\)
exposure of isolated toad gastric mucosa to 20%
ethanol and rum and whisky produced a drastic,
partially reversible inhibition of histamine
stimulated acid secretion. Mechanisms for this
effect needs further elucidation.

(c) Release of gastric acid inhibitors such as
 somatostatin. Intravenous infusion of ethanol
has not been shown to release measurable
amounts of somatostatin\(^7\) but this does not
exclude the possibility that somatostatin may
mediate the inhibitory effect on the parietal cells.
Prostaglandins inhibit acid secretion and their
synthesis and release by gastric mucosal cells is
enhanced by exposure to ethanol.\(^6\)

(d) High osmolarity. Substances with high
osmolarity have been found to inhibit acid
secretion. Because the effective osmotic pressure
exerted by ethanol is far less than its measured
osmotic pressure it is unlikely that high
osmolarity plays a major part in the production of
acid inhibition by ethanol.

Alcoholic beverages with low ethanol content
stimulate gastric acid secretion by additional
mechanisms. This is obvious from the fact that
the response to beer and wine is many times
higher than that to corresponding concentrations
of ethanol. The strong release of gastrin stimu-
lated by these beverages is clearly an important
mediator of this response but it is possible that
they may have a direct effect on the parietal cell
as well. In the study by Chacin et al\(^6\) on isolated
 toad gastric mucosa beer and wine had an effect
similar to low concentrations of ethanol. Beverages
with high ethanol content like whisky and cognac
have no effect probably because the inhibitory
effect of the high concentrations of ethanol pre-
sent in these beverages overwhelms the stimula-
tory effect of the non-ethanolic components.

What exactly the non-ethanolic components of
beer and wine that stimulate gastrin release are
is unclear. Table IV gives the results of recent
 studies to identify these components. None of
the known stimulants of acid secretion present in
beer given alone or in combination could be
implied.\(^3\) This is because the very low con-
centrations of these substances present in beer
failed to stimulate acid secretion. Among the
various products of beer tested only those
products produced after the addition of yeast —
that is, after the onset of fermentation — had any
capacity to stimulate acid secretion. Fermented
glucose was the most potent stimulant.\(^2\)

To identify this metabolic product of yeast,
fermentation of glucose extracts obtained from
fermented glucose by different extraction
methods (for example, ethyl acetate extraction,
serial biopsies one third of 12 patients with atrophic or superficial gastritis showed considerable increases in their maximal acid output, which paralleled the histological improvement seen in these patients. Further studies are needed to confirm these findings.

Acid hypersecretion found in a subgroup of alcoholic patients in these studies also occurred in dogs chronically given alcohol. This was attributed to increase in mean parietal cell mass, a threefold increase in mean parietal cell volume accompanied by mitochondrial hypertrophy, and a pronounced increase in the secretory tubular apparatus of the parietal cells. There are no studies on the effect of acute alcohol intake on gastric secretion in the chronic alcoholic patient.

Effect of chronic alcoholism on gastrin release

There is only one study (published as an abstract) that reports on the effect of alcohol on gastrin release in the chronic alcoholic patient. In this study Hajnal et al found a noticeably impaired gastrin release in response to a meal, ethanol, and wine. Although the gastrin release in response to wine was diminished compared with controls it was still higher than the response to ethanol. Clearly a study needs to be done with chronic alcoholic patients. This should be conducted soon after admission to hospital to assess the effect of commonly consumed alcoholic beverages on gastrin release and gastric acid secretion and the results should be compared with gastric histology. It would also be important to know if the changes found reverse with abstinence.

Thus recent controlled studies permit us to draw reasonably firm conclusions about the effect of ethanol and alcoholic beverages on non-alcoholic human subjects. Similar studies need to be done in chronic alcohol abusers. Further characterisation of the non-ethanol component of the effect of alcohol on ethanol that wine and spirits is needed. Acid secretion needs to be carried out. This may throw more light on the mechanism of action of the alcoholic beverages on the gastric mucosa and possibly on other organs.

The studies were supported by the Deutsche Forschungsgemeinschaft and the Wilhelm Sander Stiftung. Dr Suresh Chari's Fellowship is supported by the Alexander von Humboldt Stiftung.