Evaluation of the trophic effect of long term treatment with the histamine H\(_2\) receptor antagonist loxtidine on rat oxyntic mucosa by differential counting of dispersed cells

E Brenna, H G P Swarts, C H W Klaassen, J J H M de Pont, H L Waldum

Abstract

To evaluate whether the general trophic effect of gastrin on the oxyntic mucosa is an indirect effect mediated by histamine H\(_2\) receptors, sustained 24 hour hypergastrinaemia was induced in Sprague-Dawley rats by treatment with the long acting and potent histamine H\(_2\) antagonist loxtidine for five months. The trophic effect was assessed by weight, enumeration of total mucosal cells, parietal cells, and enterochromaffin-like cells in smears stained for the actual cells after enzymatic dispersion of the mucosa, and by biochemical analysis of oxyntic mucosal homogenates. The weight of the whole stomach and the oxyntic mucosa increased by 12·7% (p=0·016) and 27·5% (p=0·006), respectively. Total oxyntic mucosal protein content increased by 28·7% (p=0·058). Total numbers of mucosal cells and parietal cells increased by 11·9% (NS) and 24·1% (NS), respectively. The amount of the parietal cell specific enzyme H\(^+\),K\(^+\)-ATPase was unchanged. On the other hand, the number of enterochromaffin like cells and related parameters, histidine decarboxylase activity and histamine content of the oxyntic mucosa, showed a pronounced and significant increase. It is concluded that the general trophic effect of gastrin on the oxyntic mucosa is not mediated by the histamine H\(_2\) receptor. The trophic effect of gastrin on the parietal cell seems, in contrast with that on the enterochromaffin like cell, not to be specific but only reflecting the general trophic effect on the oxyntic mucosa.

(Gut 1994; 35: 1547–1550)

Gastrin stimulates the function\(^1\) and growth of the oxyntic mucosa of the rat\(^2\) as well as human.\(^3\) Initially, the positive trophic effect of gastrin was thought to be particularly noticeable on the acid producing parietal cell.\(^2\) It has been realised, however, that gastrin has a specific trophic effect on the enterochromaffin like cell,\(^4\) whereas the effect on the parietal cell seems to be parallel to the general trophic effect of gastrin on the oxyntic mucosa.\(^5\) The enterochromaffin like cell produces histamine in all vertebrates.\(^6\) Gastrin stimulates release from\(^7\) and synthesis\(^8\) of histamine in this cell in quantities that, at least in the rat, fully explain the acid stimulatory effect of gastrin.\(^9\) Hence, it was reasonable to question whether not only the functional, but also the general trophic effect of gastrin could be mediated by stimulation of histamine released from the enterochromaffin like cell.\(^10\) There is evidence supporting this hypothesis: histamine producing enterochromaffin like cell carcinoids in mastomys are surrounded by a zone of parietal cell hyperplasia,\(^11\) and the long acting histamine H\(_2\) antagonist tiotidine has been reported to induce parietal cell atrophy.\(^12\)

Quantification of the parietal cell mass has previously been done either functionally by assessing the maximal acid secretory capacity\(^13-15\) or histomorphometrically by determining the parietal cell density and the oxyntic mucosal area.\(^2 5 13 14 16\) The histomorphometric method is tedious, however, and also inaccurate, as the parietal cell density is not uniform and the estimation of the oxyntic area is uncertain. Moreover, the assessment of the parietal cell mass by means of maximal secretory capacity requires that a direct stimulus of the parietal cell is used in a dose giving maximal acid secretion.\(^10\) At least in the rat, gastrin stimulates acid secretion mainly by the stimulation of histamine release,\(^17\) and thus maximal gastrin stimulated acid secretion depends not only on the parietal, but also on the enterochromaffin like cell mass.\(^10 18 19\) There is, therefore, obviously a need for an improved method to assess the parietal cell mass.

In this study, the parietal cell mass was assessed by differential counting of dispersed mucosal cells, and indirectly by quantification of the parietal cell specific enzyme H\(^+\),K\(^+\)-ATPase.

Methods

The study was approved by the animal welfare committee of the University Hospital of Trondheim. Sprague-Dawley female rats (weighing about 225 g) were used because of their well known tendency to respond with hyperplasia of the enterochromaffin like cells secondary to hypergastrinaemia.\(^20\) Fifteen rats received the potent and long acting histamine H\(_2\) antagonist loxtidine\(^21\) (a gift from Glaxo, UK) and 16 rats received the vehicle (water) by gavage once daily for five months. The
loxtidine dose was 100 mg/kg body weight, a dose similar to that previously shown to induce a sustained 24 hour hypergastrinæmia.¹⁹ Otherwise, the two groups were housed and fed similarly. After three months, blood samples were taken from a superficial vein for determination of plasma gastrin concentration 24 hours after the last dosing. At the end of the study period, the rats were anaesthetised with 0-2 ml/100 g body weight of a combination of (per ml) 2-5 mg fluanisone, 0-05 mg phentanyl, and 1-25 mg midazolam. The animals were allowed to eat freely until anaesthetised. The last dose of loxtidine was given two hours before the rats were killed. The rats were killed by exsanguination by heart puncture. The blood was collected in tubes containing EDTA and centrifuged. Plasma gastrin concentration was determined by radioimmunoassay.²²

CELL DISPERSION AND COUNTING

The stomach was removed from seven rats in each group and transformed to an everted sac. The mucosal cells were dispersed by means of a proteolytic enzymes (Pronase-E; Merck, Darmstadt, Germany) installed into the everted stomach and incubated at 37°C for 105 minutes, essentially as described by Lewin et al.²³ All cells from each stomach were collected and counted. Smears were made for differential counting of parietal cells after staining with haematoxylin and eosin, and of enterochromaffin like cells after immunocytochemical staining, using histamine antibodies raised in rabbit (no 8431 Milab, Malmö, Sweden) as primary antibodies, goat antirabbit immunoglobulins as secondary antibodies, and finally visualised using the peroxidase-antiperoxidase technique.

The completeness of the dispersion of the gastric mucosa was ascertained by histological examination of the denuded mucosa. All these methods have been described in detail previously.²⁴

ANALYSIS OF OXYNTIC MUCOSAL HOMOGENATES

From the remaining rats (eight rats in the loxtidine group and nine rats in the control group), the stomach was removed, opened along the greater curvature, rinsed in ice cold 0-9% saline, and weighed. After removal of the antrum, the oxyntic mucosa was scraped off the remaining body of the stomach, diluted in distilled water to 100 mg/ml and homogenised. The homogenates were stored at −70°C until analysis.

The histamine content of the oxyntic mucosa was determined by radioimmunoassay, as described previously (Immunotech, Marseilles, France).²⁵ ²⁶

Enzymatic activity of mucosal histidase decarboxylase was determined by the procedure described by Beaver et al.²⁷ with some modifications.²⁸ We incubated an 80 μl aliquot of the oxyntic mucosal homogenate with [¹⁴C]L-histidine (24 nCi, 0-48 nmol; New England Nuclear, Boston, MA, USA), 0-5 mM L-histidine, and 10 mM pyridoxal-5-phosphate in a total reaction volume of 160 μl at 37°C for 60 minutes. The reaction was stopped by adding 80 μl 2 M perchloric acid followed by an incubation at 37°C for 30 minutes. The expelled ¹⁴CO₂ was trapped in 50 μl Protosol (New England Nuclear) and counted in scintillation fluid. Results are expressed as nmol ¹⁴CO₂ produced per hour.

The amount of H⁺,K⁺-ATPase in the homogenates was determined by an inhibition enzyme linked immunosorbent assay. This consisted of plate A: on a 96-well microtitre plate (Greiner, Alphen a/d Rijn, The Netherlands) 0-5 μg of purified pig gastric H⁺,K⁺-ATPase²⁹ (50 μl in phosphate buffered saline (PBS)) was immobilised in each well by overnight incubation at 4°C. Blocking was done by incubating with 200 μl 1% gelatin in PBS for two hours at room temperature and then the plates were washed with PBS containing 0-05% (wt/vol) TWEEN 20. Plate B: this plate was precoated with PBS-gelatin. Twenty μl of oxyntic mucosal homogenates and control samples containing purified pig H⁺,K⁺-ATPase preparation (containing 150 μg and 15 μg H⁺,K⁺-ATPase per ml) were incubated for 30 minutes with 5 μl 5% (wt/vol) TWEEN 20 at room temperature. After dilution to 200 μl with PBS, 40 μl was used to determine the protein concentration according to the Bio-Rad procedure (using bovine serum albumin as a standard) and either 60 μl sample or 60 μl of twofold serial dilutions were incubated with 60 μl of the monoclonal antibody 5B6.³⁰

After 60 minutes 100 μl of this mixture was transferred to plate A and the unbound monoclonal antibody was allowed to react for 60 minutes with H⁺,K⁺-ATPase. After washing with PBS-TWEEN 20 (five times), the antibody-antigen complex was incubated with peroxidase conjugated rabbit antimouse immunoglobulins (Dakopatts, Denmark), which was diluted 800 times in PBS with 1% gelatin. After 60 minutes and washing for five times with PBS-TWEEN 20, a substrate solution containing 0-4 mg/ml o-phenylenediamine (Sigma Chemicals, St Louis, MO, USA) in 24 mM citric acid and 51 mM sodium hydrogen phosphate buffer and 0-012% (wt/vol) hydrogen peroxide was added. After 10 minutes the reaction was stopped by adding 2 M sulphuric acid and the absorbance was measured at 492 nm on a Titertek Multiskan (Bio-Rad).

After correction for unspecific binding (no H⁺,K⁺-ATPase), the dilution that gave 50% reduction of the absorption was determined and compared with that of pig gastric H⁺,K⁺-ATPase preparations. The values are expressed as the amount of H⁺,K⁺-ATPase per mg protein. The calculated total amount of H⁺,K⁺-ATPase in the oxyntic mucosa is also given. The significance of the differences was evaluated by the Student’s t test. All values are given as mean (SD).
Effect on the rat oxyntic mucosa of loxetine treatment (100 mg/kg body weight) for five months

<table>
<thead>
<tr>
<th>Loxetine</th>
<th>Control</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat weight (g)</td>
<td>298 (19-2)</td>
<td>294 (15-2)</td>
</tr>
<tr>
<td>Plasma gastrin (pm) 2 hours after dosing</td>
<td>149-8 (80-6)</td>
<td>80-7 (43-7)</td>
</tr>
<tr>
<td>Plasma gastrin (pm) 24 hours after dosing</td>
<td>104 (70-5)</td>
<td>41-8 (13-3)</td>
</tr>
<tr>
<td>Plasma histamine (nm) 2 hours after dosing</td>
<td>539-3 (35-9)</td>
<td>316-3 (97-3)</td>
</tr>
<tr>
<td>Whole stomach weight (g)</td>
<td>1-960 (0-208)</td>
<td>1-739 (0-120)</td>
</tr>
<tr>
<td>Weight of oxyntic mucosa (g)</td>
<td>0-403 (0-063)</td>
<td>0-316 (0-047)</td>
</tr>
<tr>
<td>Mucosal protein content (mg)</td>
<td>51-28 (11-26)</td>
<td>39-85 (11-64)</td>
</tr>
<tr>
<td>Mucosal cells X 10^7</td>
<td>22-5 (5-7)</td>
<td>20-1 (4-2)</td>
</tr>
<tr>
<td>Parietal cells X 10^6</td>
<td>57-7 (12-5)</td>
<td>46-5 (13-6)</td>
</tr>
<tr>
<td>Marchal 24-5 (2-2)</td>
<td>22-9 (2-4)</td>
<td>NS</td>
</tr>
<tr>
<td>Mucosal H⁺,K⁺-ATPase concentration (μg/mg protein)</td>
<td>2-45 (4-7)</td>
<td>27-9 (5-3)</td>
</tr>
<tr>
<td>Total amount of mucosal H⁺,K⁺-ATPase (μg)</td>
<td>118-5 (273-5)</td>
<td>113-98 (378-4)</td>
</tr>
<tr>
<td>Enterochromaffin like cells X 10^6</td>
<td>15-3 (4-2)</td>
<td>5-9 (2-1)</td>
</tr>
<tr>
<td>Mucosal histamine content (nmol)</td>
<td>6-9 (1-0)</td>
<td>2-6 (0-8)</td>
</tr>
<tr>
<td>Histidine decarboxylase activity (nmol CO₂/h)</td>
<td>512 (242-9)</td>
<td>157-2 (47-1)</td>
</tr>
</tbody>
</table>

All values are given as mean (SD).

Results

The Table summarises the results.

Loxetine induced a significant increase in plasma gastrin concentration two hours and 24 hours after the last dose. Loxetine did not affect the weight of the rats. The weights of the whole stomach and oxyntic mucosa were significantly increased in the rats treated with loxetine. The total amount of protein also increased, although of borderline statistical significance. On the other hand, the number of gastric mucosal cells did not increase significantly. The increase in parietal cell mass induced by loxetine was more noticeable, but did not reach significance. The mucosal amount of the parietal cell specific enzyme H⁺,K⁺-ATPase was unaffected by the loxetine treatment.

The enterochromaffin like cell mass was three times as high in the loxetine treated rats with an even more noticeable increase in the activity of the enterochromaffin like cell specific enzyme histidine decarboxylase, and mucosal histamine content.

Discussion

In this study we have assessed the total masses of the parietal and enterochromaffin like cells by enzymatic dispersion and counting of the mucosal cells followed by differential counting on smears stained for the actual cells. This method is rapid, and permits determination of the total cell masses, not only the density of the different cell types. Furthermore, a new enzyme linked immunosorbent assay for the determination of H⁺,K⁺-ATPase in mucosal homogenates is described, and quantification of this specific enzyme is also used for assessment of the parietal cell mass. An immunoassay of pig and human gastric H⁺,K⁺-ATPase has been described previously, but that method could not be used on homogenates.

The findings confirm the specific trophic effect of profound acid inhibition on the enterochromaffin like cells, an effect mediated by hypergastrinaemia. The magnitude of the enterochromaffin like cell hyperplasia recorded in this study, is comparable with what has been found previously after prolonged hypergastrinaemia, assessed by histomorphometry. The histidine decarboxylase activity increased more than the enterochromaffin like cell mass, showing that loxetine treatment increased the enzyme activity in the individual enterochromaffin like cells. Gastrin seems to regulate the histidine decarboxylase gene expression, and the increase in enzyme activity in the individual cells therefore probably reflects the hypergastrinaemia in the histamine treated rats.

The whole stomach weight increased in the loxetine treated group, and this increase was mainly caused by an increased weight of the oxyntic mucosa. The oxyntic mucosal cell number and the total amount of mucosal protein increased only slightly and nonsignificantly. Taken together, these findings suggest that the increase in the oxyntic mucosal weight may partly be caused by an increase in the intercellular matrix. The parietal cell mass showed a stronger tendency to increase than the total mucosal cell mass, and in percentage terms the increase in parietal cells was more pronounced than in the oxyntic mucosa. Accordingly, the general trophic effect of gastrin on the oxyntic mucosa seems not to be mediated by the histamine H₂ receptor. This is in agreement with a recent study by Anderson et al. showing that hypergastrinaemia induced a general trophic effect on the oxyntic mucosa also when the enterochromaffin like cells were totally depleted of histamine.

Initially, gastrin was thought to have a specific trophic effect on the parietal cell, but this has been difficult to confirm. In this study, the number of parietal cells increased by 24-15%, whereas the total amount of the parietal cell specific enzyme H⁺,K⁺-ATPase was unaffected by the loxetine induced hypergastrinaemia, suggesting a reduction in the concentration of the enzyme on the parietal cell. This may show that longer term potent histamine H₂ blockade inhibits the production of the H⁺,K⁺-ATPase. In contrast with omeprazole induced hypergastrinaemia, hypergastrinaemia secondary to histamine H₂ blockade does not activate the H⁺,K⁺-ATPase gene in short term experiments. On the other hand, the H⁺,K⁺-ATPase gene expression was unchanged during seven days of treatment with omeprazole. To our knowledge, however, the effect of more long-term hypergastrinaemia, either induced by histamine H₂ antagonists or H⁺,K⁺-ATPase inhibitors, on the H⁺,K⁺-ATPase gene expression has not been examined.

In conclusion, we describe a new and simplified method for the determination of different mucosal cell masses, and confirm that hypergastrinaemia secondary to longterm acid inhibition induced by a histamine H₂ blocker evokes a specific trophic effect of the enterochromaffin like cell and a less pronounced general trophic effect of the oxyntic mucosa. Accordingly, it is highly unlikely that the general trophic effect of gastrin on the oxyntic mucosa is mediated by a histamine H₂ receptor. The enterochromaffin like cell, however, having ultrastructural...
features of a peptide producing cell,39 may also secrete peptides with trophic effect on the gastric progenitor cells.


Evaluation of the trophic effect of longterm treatment with the histamine H2 receptor antagonist loxtidine on rat oxyntic mucosa by differential counting of dispersed cells.

E Brenna, H G Swarts, C H Klaassen, J J de Pont and H L Waldum

Gut 1994 35: 1547-1550
doi: 10.1136/gut.35.11.1547

Updated information and services can be found at:
http://gut.bmj.com/content/35/11/1547

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections
- Gastrointestinal hormones (848)
- Stomach and duodenum (1689)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/