Expression of transforming growth factor alpha in experimental gastric carcinogenesis

J I Livingstone, M I Filipe, C Wastell

Abstract
The induction of adenocarcinomas in the glandular stomach of the adult male Wistar rat by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was used as a model to study the expression of the growth promoting peptide, transforming growth factor alpha (TGFα), during experimental gastric carcinogenesis. TGFα was identified using the monoclonal antibody Ab-2 and standard immunohistochemistry, together with a semiquantitative assessment of the intensity of expression. Immunoreactivity was confined to the differentiated compartment of the mucosa while the carcinogen MNNG caused a significant increase in the intensity of TGFα expression (p<0.01), after as little as 16 weeks' exposure. In experimental adenocarcinomas, a change to a previously undescribed pattern of perinuclear TGFα expression was found, which may represent the site of intense TGFα production in the Golgi apparatus after malignant transformation.

(Gut 1994; 35: 604–607)

Transforming growth factor alpha (TGFα) is a 50 amino acid peptide first isolated from fibroblasts transformed by rodent sarcoma viruses,1 which acts as a ligand for the epidermal growth factor receptor and shares many biological properties with epidermal growth factor.2 The distribution of TGFα as determined by monoclonal antibody staining is widespread throughout the gastrointestinal tract but confined to the differentiated compartment of gastric mucosa, suggesting a regulatory role for the peptide in normal gastric epithelium.3 4 TGFα has the ability to induce malignant transformation in some epithelial cells in vitro5 6 but its role in human carcinogenesis is unknown. In a study of oesophageal diseases, Jankowski showed TGFα immunoreactivity in association with high grade dysplasia in Barrett’s oesophagitis7 while Yonemura showed that gastric cancers immunopositive for TGFα and epidermal growth factor receptor were associated with advanced disease and poor prognosis.8

The experimental induction of adenocarcinoma in the glandular stomach of the rat by the nitroso compound N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a well established model of gastric carcinogenesis.9 10 The progression of changes seen during exposure to the carcinogen includes atrophy, regenerative hyperplasia, and dysplasia, which are histologically similar to premalignant stages of human gastric carcinogenesis11 12 although intestinal metaplasia is only rarely seen in the rat.13 The aim of this investigation was to use the controlled situation of the animal model to study the progression of immunoreexpression of TGFα during the course of experimental gastric carcinogenesis.

Animals and methods
The animals used were adult male Wistar rats of initial weight between 150–200 g. Ten animals were used as controls to study TGFα expression in normal gastric mucosa. A further 40 animals were fed MNNG (Sigma, UK) in the drinking water at a concentration of 150 micrograms/litre for the duration of the experiments, replenished from a stock solution on alternate days and kept in foil wrapped bottles to prevent degradation by light. From 16 weeks of exposure onwards, three animals were killed every six weeks. All remaining animals were killed by 60 weeks.

After removal, the stomachs were cut into longitudinal strips, fixed in formalin, and embedded in paraffin wax. Four micron sections were stained with haematoxylin and cosin and examined for pathological changes; a diagnosis of adenocarcinoma was made only if a lesion showed appropriate histological features and fulfilled Stewart’s criteria for the diagnosis of experimental malignancy.15 Immunohistochemistry was performed using the mouse monoclonal antibody Ab-2 (Oncogene Science, Cambridge, UK) which is specific for human and rat TGFα with no cross reactivity to epidermal growth factor. Sections were pre-digested with trypsin for 15 minutes to expose the antigenic sites before incubation with Ab-2 at a dilution of 1:100, overnight at 4°C. After washing with TRIS buffered saline, rabbit antimouse serum (Dako, UK) and streptavidin peroxidase complex (Dako) were added at dilutions of 1:300 and 1:400 respectively, both for 30 minutes, before application of diaminobenzidine and counter staining with Mayer’s haematoxylin. After dehydration in alcohol, sections were cleared in xylene, and mounted in diphthalate xylene. A positive control section was included in each batch to ensure consistency of staining. Two types of negative controls were used; in the first, the primary antibody was replaced by TRIS buffered saline. In the second, specific controls were performed by preincubation of the sections with an excess of the TGFα peptide PF008 (Oncogene Science).

The intensity of TGFα immunoreactivity was graded 0–III using the semiquantitative method described by Jankowski.1 This assessment was made at the top, neck, and base of the crypts, in both proximal and distal glandular mucosa, unless destroyed by tumour growth. The cellular pattern of staining was also noted. The results were validated independently by a second
Expression of transforming growth factor alpha in experimental gastric carcinogenesis

Characteristics of experimentally induced adenocarcinomas

<table>
<thead>
<tr>
<th>Tumour type</th>
<th>Borrmann type</th>
<th>Differentiation</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>Well</td>
<td>Localised, cystic</td>
</tr>
<tr>
<td>2</td>
<td>III</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>Moderate</td>
<td>In situ and invasive</td>
</tr>
<tr>
<td>4</td>
<td>Moderate</td>
<td>Focal tumour</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IV</td>
<td>Well</td>
<td>Part calcified</td>
</tr>
<tr>
<td>7</td>
<td>IV</td>
<td>Well</td>
<td>Part calcified</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>Poor</td>
<td>Ulcereated</td>
</tr>
<tr>
<td>11</td>
<td>I</td>
<td>Well</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IV</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>IV</td>
<td>Well</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I</td>
<td>Well</td>
<td>Cystic degeneration</td>
</tr>
<tr>
<td>15</td>
<td>I</td>
<td>Well</td>
<td></td>
</tr>
</tbody>
</table>

Observe and statistical comparisons between groups were performed using the Mann-Whitney U test for non-parametric data.

Results

Of the 40 animals exposed to the carcinogen MNNG, 15 developed adenocarcinomas, the earliest detected after 26 weeks. The Table summarises the characteristics of the induced tumours. Mucosal atrophy and microcyst formation were seen from the earliest animals killed, progressing to increasing cellular dysplasia.

In control animals, immunopositivity to TGFα was ubiquitous in all the stomachs examined and was abolished in both specific and non-specific negative controls. There was close agreement in interpretation between the two observers. Cellular staining was equally distributed between membrane and cytoplasm with no nuclear staining seen.

The mucosal distribution of TGFα immunoreactivity was concentrated in the differentiated compartment from mid crypt towards the lumen. This was particularly so in proximal, cardiac type mucosa; distal, antral mucosa showed a more even pattern over the lengths of the crypts (Fig 1). Parietal cells showed particularly noticeable staining.

In animals exposed to the carcinogen MNNG where tumour growth had not destroyed the mucosa, a significant increase in the overall density of mucosal TGFα positivity occurred compared with normal controls (means (medians) 2.2 (2.0), 1.7 (2.0) respectively, p = 0.0094, Mann-Whitney U) (Fig 2). This trend was apparent in both proximal and distal mucosa, but was more noticeable in the first than in the second. The increased TGFα expression was seen in the earliest animals killed.

Premalignant lesions within the mucosa were specifically examined for their pattern of TGFα immunostaining. Overexpression of the peptide compared with the surrounding mucosa was occasionally seen in association with areas of severe dysplasia or microcysts but this was not a uniform finding and a definite trend in these lesions could not be identified.

In tumour tissue, a complete change in the pattern of TGFα immunoreactivity occurred. The previously seen somewhat diffuse cytoplasmic and cell membrane staining was lost but immunopositivity instead became localised to a crescent adjacent to the nucleus, usually on the perinuclear aspect of the nucleus (Fig 3). 'Perinuclear' immunopositivity was ubiquitous in every experimentally induced cancer in this study but was not seen in non-cancer tissue, whether MNNG exposed or not.

The perinuclear staining pattern was dis...
tumours rather than the stromal elements, the cellular appearance remaining similar whatever the overall grade of tumour differentiation. Only one example of significant carcinoma in situ was found; perinuclear staining was occasionally seen within this lesion but was less noticeable than in overtly invasive neoplasia, most of the lesion showing the more diffuse type of cytoplasmic staining.

The change in the pattern of immunostaining accompanying malignant transformation precluded direct comparison of the intensity of TGFα expression in tumour and non-tumour tissue.

Discussion

The use of MNNG once more proved a reliable method of adenocarcinoma induction in the glandular stomach of the rat, with a series of recognisable intermediate changes.

The distribution of TGFα in normal mucosa was compatible with that described by Thomas and Nasim and is further evidence in support of a regulatory role for this peptide in the growth and differentiation of normal mucosa. The localisation of TGFα to the top and neck region in proximal gastric crypts compared with the more even distribution in distal crypts may result from tighter packing of the cells in the upper regions of proximal crypts but, at a functional level, implies a broadening of the zone of differentiation in distal mucosa. This may, in turn, result from slower mucosal turnover in this region.

The overexpression of TGFα during exposure to the carcinogen is compatible with the proposed role for the peptide in regulating mucosal growth and regeneration although it is difficult to say which is cause and which effect. In vitro studies show that TGFα can stimulate cell proliferation and, in some cell lines, malignant transformation although not human gastric cancer cells. Nevertheless, these studies suggest that overexpression of TGFα is responsible for the response to mucosal damage rather than being merely a paraphenomenon, and that the mechanism or, therefore, take part in autocrine positive feedback systems as described by Sporn.

The increase in TGFα expression as early as 16 weeks after exposure to MNNG shows that the mechanisms behind mucosal regeneration are capable of rapid response. The lack of localised increases in immunopositivity in association with histologically recognisable premalignant lesions suggests that the role of TGFα in rat gastric carcinogenesis is more of a general mucosal response rather than specific transformation.

The change in TGFα expression associated with malignant transformation was unexpected. Although a variety of patterns of TGFα expression are recognised, localisation into perinuclear deposits has not, to our knowledge, previously been reported in published works.

Clearly, a significant change in the role of TGFα occurred in this animal model during malignant transformation. That the perinuclear pattern was not seen in association with recognised premalignant lesions and only partially in association with carcinoma in situ, suggests that the mechanisms underlying it are late events in carcinogenesis. We put forward two possible interpretations of perinuclear staining; the pattern could represent internalised TGFα in perinuclear endosomes after receptor binding or, alternatively, the site of intense TGFα synthesis in the Golgi apparatus. To substantiate the first would require a similar pattern of immunostaining by epidermal growth factor receptor, which our preliminary (unpublished) data does not support. To substantiate the second would require the finding of TGFα mRNA by in situ hybridisation or extraction of mRNA for a northern analysis. Alternatively, immunoelectron microscopy would help to determine the cellular organelle involved.

In conclusion, this study supports a central role for TGFα in normal mucosal regeneration and in the response to a mutagenic stimulus. There is a fundamental change in the immunostaining pattern of the peptide during experimental carcinogenesis. Elucidation of the mechanism may contribute significantly to our understanding of the role of TGFα in malignant transformation.

We are grateful to Dr W J Gallick of the ICRF molecular oncology group for advice on the interpretation of the immunochemistry.

Expression of transforming growth factor alpha in experimental gastric carcinogenesis

15 Tsiftsis DD. Study of the altered mucin secretion pattern and the ultrastructure of the gastric mucosa in precancerous lesions (experimental study on rats) [Thesis]. Athens, University of Athens, 1984.
17 Stewart HL, Snell KC, Morris HP. Histologic criteria for the diagnosis of experimentally induced carcinomas and precancerous lesions of the glandular stomach of inbred strains of rats and comparison with transplantability. Gann Monogr 1969; 8: 333-75.
Expression of transforming growth factor alpha in experimental gastric carcinogenesis.
J I Livingstone, M I Filipe and C Wastell

Gut 1994 35: 604-607
doi: 10.1136/gut.35.5.604

Updated information and services can be found at:
http://gut.bmj.com/content/35/5/604

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Pancreatic cancer (660)
Stomach and duodenum (1689)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/