Pouchitis: result of microbial imbalance?

J GH Ruseler-van Embden, WR Schouten, LM C van Lieshout

Abstract
To elucidate the role of microbiological factors in pouchitis, this study investigated the composition of ileal reservoir microflora, the mucus degrading capacity of bacterial enzymes as well as the pH and the proteolytic activity of pouch effluent. Stool samples were collected from five patients with pouchitis and nine patients without pouchitis. The flora of patients with pouchitis had an increased number of aerobes, a decreased ratio anaerobes to aerobes, less bifidobacteria and anaerobic lactobacilli, more Clostridium perfringens, and several species that were not found in control patients (for example, fungi). Furthermore the pH was significantly higher in patients with pouchitis (median value 6.5) than in control patients (5.4). To find out if the pH might influence the breakdown of intestinal mucus glycoproteins, the activity of glycosidases and proteases, and the degradation of hog gastric mucin by the pouch flora was tested at pH 5-2-7.6. Some glycosidases were inhibited, others were stimulated by a low pH, however, in each sample the proteolytic activity was inhibited for 75% at pH 5-2 compared with pH 6-8 and 7-6. Degradation of hog gastric mucin by the pouch flora was an active process at pH 7-2: within two to four hours of incubation more than half of the mucin was degraded. At pH 5-2 it took twice as long. It is concluded that pouchitis probably results from instability of the flora in the pouch, which causes homeostasis to disappear (dysbiosis), and the protection of the pouch epithelium by the mucus layer becomes affected by increased activity of bacterial and host derived enzymes.

(Gut 1994; 35: 658–664)

In the past, a permanent Brooke ileostomy was inevitable for patients requiring a proctocolectomy for either ulcerative colitis or familial adenomatous polyposis. During the past two decades, the continent ileostomy, devised by Kock, and the ileoanal anastomosis, introduced by Parks and Usunomiya, have evolved into attractive alternatives. Both procedures have the advantage of removing all diseased mucosa while avoiding a conventional and incontinent ileostomy. The construction of an ileal reservoir, however, often results in mucosal changes. Although most of these changes remain subclinical, some patients will develop a clinical syndrome known as pouchitis.17 To define pouchitis different diagnostic criteria have been used, which makes it hard to interpret the reported data on pouchitis. Recently, it had been advocated that an unequivocal diagnosis should be based on a diagnostic triad, consisting of the following components: clinical symptoms, endoscopic features of acute inflammation, and histological evidence of a prominent polymorphonuclear cell infiltrate.18 Pouchitis occurs in 10–20% of the patients who have surgical treatment for chronic ulcerative colitis (only a few cases have been described in patients operated for familial adenomatous polyposis). The incidence has risen, however, with a longer period of follow up to 40%.18–20 Most patients with pouchitis respond well to metronidazole, but chronic pouchitis patients require continuous treatment with sulphasalazine or corticosteroids.21

The cause of pouchitis is not clear. The immediate response to antibiotic treatment suggests a role for the flora in the pouch. There are few indications of the participation of intestinal pathogens and it has become evident that the flora is not directly responsible for pouchitis.18–20 The ileum reservoir is colonised with large numbers of bacteria that closely resemble the flora found in the large intestine and outnumber the flora of the normal ileum.19,20 Micro-organisms are known to be active producers of metabolites and toxins and when localised to the ileal reservoir bacterial products could injure mucosal epithelial cells. Bacterial enzymes with the capacity to degrade intestinal mucus are also potentially dangerous to the ileal mucosa. Enzymes participating in the breakdown of oligosaccharide side chains of mucin glycoproteins are glycosidases. These enzymes are produced by several representatives of the human colon flora21–24 and were present in ileal pouches of experimental colectomised dogs.25 Breakdown of the polysaccharide moiety of the glycoprotein may result in impairment of the protective function of the mucus, which may become more permeable to toxic bacterial metabolites and host derived proteolytic enzymes.

This might be the situation in patients with pouchitis: luminal components, such as bacterial antigens, may cause a local inflammatory reaction when the integrity of the mucosa is affected by a combined action of bacterial glycosidases and proteolytic enzymes.

To examine the factor that might control this process, we compared several parameters (composition of the pouch flora, activity of bacterial mucus degrading enzymes, pH, proteolytic activity) in faeces from patients with and patients without pouchitis.

Methods

PATIENTS
Fourteen patients (six males, eight females) with a median age of 27 years were studied. The patients had a restorative proctocolectomy for ulcerative colitis (n=12) or familial adenomatous polyposis (n=2). An S pouch was constructed in
12 patients, whereas in two patients a W pouch was created. This study was performed at least one year after the restorative proctocolectomy. The diagnosis pouchitis was based on the triad: (a) clinical symptoms (watery and sometimes bloody diarrhoea, abdominal discomfort, urgency, incontinence, and sometimes fever and malaise); (b) endoscopic features of acute non-specific inflammation (granularity, oedema, erythema, friability, petechiae, hypersecretion, and multiple superficial erosive defects), (c) histological evidence of an acute inflammatory cell infiltrate, consisting of polymorphic granulocytes, associated with crypt abscesses and ulcerations. Using these criteria five patients presented with pouchitis and nine did not (controls). Two patients were investigated during an episode of pouchitis and during a disease free period. Four patients had pouchitis that resolved promptly after treatment with metronidazole (flagyl); one patient did not respond to metronidazole and required continuous treatment with 5 aminosalicylate (5-ASA) to remain asymptomatic.

Stool samples were transferred to the laboratory immediately after defecation. Two samples of faeces were obtained from each patient without pouchitis, with at least a two month interval and were examined for flora composition and enzymatic activity. Faecal samples from patients with pouchitis were examined before treatment.

BACTERIOLOGICAL TECHNIQUES

Within one to two hours after collection, the stools were processed. The samples were thoroughly mixed and 10-fold dilutions were prepared in anaerobic dilution solution. Samples of appropriate dilutions were plated aerobically on MacConkey (Oxoid), Sabouraud (Oxoid), Rogosa (Oxoid), azide blood (Oxoid), and blood agar plates. Anaerobes were cultured in anaerobic culture flasks, filled with a 90% N₂ and 10% CO₂ mixture (neuraminidase, β D-N-acgalactosaminidase, α D-mannosidase, β D-N-ac glucosaminidase, and α D-mannosidase were estimated by using their p-nitrophenyl glycoside substrates. One unit of enzyme activity was defined as the amount that released 1 μmol of p-nitrophenol/min at 37°C. Neuraminidase activity was measured with N-ac-neuramin-lactose (Sigma) as substrate by the method of Warren. One unit of neuraminidase released 1 μmol of neuraminic acid/min at 37°C. The limit of detection in these assays was 0-01 U.

Proteolytic activity was determined with azocasein (Sigma) as substrate. Proteolytic activity was expressed in milligrams of azocasein hydrolysed in one hour at 37°C. All enzyme activities were described per gram of faeces.

In these standard enzyme assays dilutions of the faecal samples and enzyme substrates were made in 0-1 M acetate buffer pH 6-0 (neuraminidase), 0-1 M phosphate buffer pH 6-8 (the other seven glycosidases), and 0-1 M phosphate buffer pH 7-6 (proteases). To test the effect of pH on the enzymatic activities, all faecal samples (from nine control patients) were diluted in citric acid-phosphate buffer (0-1 M Na₂ HPO₄/2H₂O, 0-1 M citric acid/H₂O) pH 5-2, 5-8, 6-8, and 7-6. Additionally the substrate solutions were made in the appropriate buffers.

MUCIN DEGRADATION

About 100 g of fresh faeces was mixed carefully, the pH was measured, and 35 g faeces was diluted in 1:1 w/vod of glucose fermentation were used to identify the isolates to genus or species level. Anaerobic bacteria were classified according to Holdeman et al.

pH MEASUREMENT IN FAECEs

The pH was determined with a pH meter (28, Radiometer, Copenhagen) by inserting the electrode (GK2402C, Radiometer) directly in fresh undiluted faecal samples of at least 25 g, collected in a small container. Direct measurement without previous mixing of the samples prevents as much escape of gas as is possible, which constitutes more than 50 per cent of the total volume of the ileal reservoir.

After the direct measurements, the samples were carefully mixed with a spatula and the pH was estimated again. Apart from the samples used for bacteriological and enzymatic investigation, at least 10 faecal samples (obtained over a month at various times of the day) from each patient with pouchitis were examined. Stools from patients with pouchitis were examined before treatment with metronidazole.

ENZYME ASSAYS

Within two hours of collection, the stool samples were stored at -20°C. Preliminary studies showed no changes in enzyme activities after storage for at least one month. Samples were diluted and homogenised (Stomacher Lab Blender 400) for 10 minutes. Coarse particles were removed by gauze filtration.

The activities of α L-fucosidase, α and β D-N-acgalactosaminidase, α and β D-galactosidase, β D-N-ac glucosaminidase, and α D-mannosidase were estimated by using their p-nitrophenyl glycoside substrates. One unit of enzyme activity was defined as the amount that released 1 μmol of p-nitrophenol/min at 37°C. Neuraminidase activity was measured with N-ac-neuramin-lactose (Sigma) as substrate by the method of Warren. One unit of neuraminidase released 1 μmol of neuraminic acid/min at 37°C. The limit of detection in these assays was 0-01 U.

Proteolytic activity was determined with azocasein (Sigma) as substrate. Proteolytic activity was expressed in milligrams of azocasein hydrolysed in one hour at 37°C. All enzyme activities were described per gram of faeces.

In these standard enzyme assays dilutions of the faecal samples and enzyme substrates were made in 0-1 M acetate buffer pH 6-0 (neuraminidase), 0-1 M phosphate buffer pH 6-8 (the other seven glycosidases), and 0-1 M phosphate buffer pH 7-6 (proteases). To test the effect of pH on the enzymatic activities, all faecal samples (from nine control patients) were diluted in citric acid-phosphate buffer (0-1 M Na₂ HPO₄/2H₂O, 0-1 M citric acid/H₂O) pH 5-2, 5-8, 6-8, and 7-6. Additionally the substrate solutions were made in the appropriate buffers.

MUCIN DEGRADATION

About 100 g of fresh faeces was mixed carefully, the pH was measured, and 35 g faeces was diluted in 1:1 w/vod of glucose fermentation were used to identify the isolates to genus or species level. Anaerobic bacteria were classified according to Holdeman et al.
TABLE 1 Flora, enzymes, pH, and dry weight of pouch effluent

<table>
<thead>
<tr>
<th>Patients</th>
<th>No pouchitis</th>
<th>Pouchitis</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of micro-organisms†</td>
<td>9-11 (9-10)</td>
<td>8-80 (8-10)</td>
<td>NS</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>7-00 (3-8)</td>
<td>8-52 (7-8)</td>
<td>0-03</td>
</tr>
<tr>
<td>Aerobes</td>
<td>9-41 (9-10)</td>
<td>8-48 (7-10)</td>
<td>NS</td>
</tr>
<tr>
<td>Esherichia</td>
<td>5-18 (ND-8)</td>
<td>7-70 (5-8)</td>
<td>NS</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>6-58 (ND-8)</td>
<td>7-56 (5-9)</td>
<td>NS</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>3-78 (ND-7)</td>
<td>3-90 (ND-7)</td>
<td>NS</td>
</tr>
<tr>
<td>Candida</td>
<td>3-30 (ND-5)</td>
<td>4-30 (ND-7)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Glycosidases

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Control</th>
<th>Pouchitis</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-D-galactosidase</td>
<td>0-07 (0-01-0-16)</td>
<td>0-03 (ND-0-11)</td>
<td>NS</td>
</tr>
<tr>
<td>β-D-galactosidase</td>
<td>0-15 (ND-0-30)</td>
<td>0-04 (ND-0-11)</td>
<td>NS</td>
</tr>
<tr>
<td>α-L-fucosidase</td>
<td>ND (ND-0-04)</td>
<td>ND (ND-0-02)</td>
<td>NS</td>
</tr>
<tr>
<td>α-D-mannosidase</td>
<td>ND (ND-0-02)</td>
<td>ND (ND-0-14)</td>
<td>NS</td>
</tr>
<tr>
<td>β-D-N-acetylglucosaminidase</td>
<td>ND (ND-0-13)</td>
<td>ND (ND-0-02)</td>
<td>NS</td>
</tr>
<tr>
<td>α-D-N-acetylgalactosaminidase</td>
<td>ND (ND-0-09)</td>
<td>ND (ND-0-02)</td>
<td>NS</td>
</tr>
<tr>
<td>β-D-N-acetylgalactosaminidase</td>
<td>ND (ND-0-09)</td>
<td>ND (ND-0-02)</td>
<td>NS</td>
</tr>
<tr>
<td>Neuraminidase</td>
<td>ND (ND-0-03)</td>
<td>0-02 (ND-0-01-0-02)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Proteolytic activity

| pH | 5-4 (7-6-7) | 6-5 (6-0-7-8) | <0-01 |

Dry weight, mg/g faeces

| 84 (57-103) | 52 (30-110) | NS |

*All values are given as medians and ranges (in parentheses); ND, not detected; † value of difference in controls; NS, not significant; ‡ numbers of bacteria are given as log10/g gram wet faeces and the ranges are rounded off to the nearest log10. The limits of detection were as follows: for *Esherichia*, aerobic cocci, anaerobic bacteria 4·3; for aerobic lactobacilli and yeasts 2·3. Not included in the Table are species that were found only once or one to three times but in small amounts: Staphylococcus epidermidis, Bacterioides sp, Campylobacter sp, and Clostridium sp. § All glycosidase activities were measured as micromoles of p-nitrophenol released/minute (units)/gram wet faeces, apart from neuraminidase, which was measured as micromoles of neuraminic acid/minute (units)/gram wet faeces. The limit of detection was 0-01 U/gram; ‖ proteolytic activity is expressed as milligrams of hydrolysed azocasein/hour/g wet faeces. The limit of detection was 0-02 μg hydrolysed azocasein/hour/g.

Eight hours at 37°C; a sample was removed every two hours and placed in a waterbath at 80°C for 15 minutes to stop bacterial and enzymatic activity. After centrifuging, the remaining mucin was recovered by ethanol precipitation. Control experiments were performed by incubating faecal homogenates in buffer without mucin (pH 5·2 and 7·2), mucin solution (0·5%) in buffer (pH 5·2 and 7·2), and autoclave sterilised mixtures of faeces and mucin, under identical conditions. Degradation of mucin was determined by estimation of mucin protein using a modification described by Miller and Hoskins, hexosamines by the method of Ghysen after hydrolysis in 2·5 N HCl at 90°C, hexoses (corrected for fucose) according to Mokrassch and fucose by the method of Diethe and Shettsle. Mucin bloodgroup A and H antigenicity was determined in haemagglutination inhibition tests; the reciprocal value of the highest dilution of antigen glycoprotein that completely inhibited haemagglutination was defined as the antigen titre. Faecal samples from four control patients and the patient who required daily 5-ASA were used for these experiments.

RESULTS

FLORA, ENZYMES, AND pH IN POUCH OUTPUT

There were no differences found in total numbers of bacteria when pouch effluent from controls and patients was compared (Table 1). Although the median value of the total counts of anaerobes was lower in patients with pouchitis, this difference was not statistically significant (p=0·08). Statistically higher numbers of aerobes were cultured from faeces taken from pouchitis patients. This is reflected in the proportion anaerobes to aerobes: patients without pouchitis harboured more than hundred times more anaerobes than aerobes, pouchitis patients only two times more anaerobes.

Bifidobacterium and anaerobic *Lactobacillus* species were found only once in pouchitis effluent, but in 84% of the control samples. Furthermore *Clostridium perfringens* was found in more than 75% of the pouchitis samples, but only in 25% of the samples from patients without pouchitis. No significant differences in the composition of the aerobic faeces were found.

From the pouch of each control patient two samples were cultured within at least a two month interval. We noticed large differences in anaerobic bacterial composition between two samples of one subject. In the first sample more than 10 different species were found but just a single species in the second sample. Furthermore from the pouchitis group we cultured fungi and yeasts, other than *Candida albicans*; these were not found in the control group.

All tested glycosidases were shown, α and β-D-galactosidase in nearly every sample, but α-L-fucosidase in only five samples. Their activity, measured on p-nitrophenyl substrates at pH 6·8 (neuraminidase pH 6·0, for neuraminidase) was similar in both groups. The same applied to the proteolytic activity, the standard measured with azocasein substrate, at pH 7·6.

The most striking difference between the control and the pouchitis group was the pH. In faeces from the control patients the pH was 5·4 (median value), which is significantly lower than the pouchitis group (pH 6·5). The time of the day the faeces was collected did not influence the results. To find out if the pH is (one of) the controlling mechanism(s) in the breakdown of intestinal mucoglycoproteins, we tested the influence of the pH on the activity glycosidases and proteases present in pouch effluent, and on the degradation of hog gastric mucin by the pouch flora.

EFFECT OF pH ON ENZYMATIC ACTIVITY

Table II shows that in pouch effluent from nine control patients the activities of four glycosidases were tested at four different pH values: α-D-galactosidase and β-D-N-acetylglucosaminidase were found to have 2-4 times higher activity at a low pH; neuraminidase and β-D-galactosidase were mainly active at pH 6·8-7·6. Apart from α glycosidases, other proteases at different pH values* and the carbohydrate and protein fractions after incubation of mucin with a pouch at pH 5·2 and 7·2.

STATISTICS

The Mann-Whitney U test was used to compare numbers of bacteria, glycosidases, and proteolytic activity and pH in faeces obtained from control patients and those obtained from patients with pouchitis. The Wilcoxon signed rank test was used to compare the activities of proteases at different pH values* and the carbohydrate and protein fractions after incubation of mucin with a pouch at pH 5·2 and 7·2.
Table II
Activity of Four Glycosidases in Faeces from Nine Patients without Pouchitis

<table>
<thead>
<tr>
<th>pH</th>
<th>α-D-Galactosidase</th>
<th>β-D-Galactosidase</th>
<th>β-D-N-Ac Glucosaminidase</th>
<th>Neuraminidase</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>0.21 (9/9)</td>
<td>0.11 (1/9)</td>
<td>0.08 (5/9)</td>
<td>0.01 (9/9)</td>
</tr>
<tr>
<td>5.8</td>
<td>0.14 (9/9)</td>
<td>0.13 (9/9)</td>
<td>0.05 (2/9)</td>
<td>0.03 (1/9)</td>
</tr>
<tr>
<td>6.8</td>
<td>0.07 (9/9)</td>
<td>0.15 (9/9)</td>
<td>0.02 (2/9)</td>
<td>0.05 (9/9)</td>
</tr>
<tr>
<td>7.2</td>
<td>0.07 (9/9)</td>
<td>0.17 (9/9)</td>
<td>0.02 (2/9)</td>
<td>0.02 (9/9)</td>
</tr>
</tbody>
</table>

* Glycosidase activity was measured as micromoles of p-nitrophenol released/minute (units)/g wet faeces, apart from neuraminidase, which was measured as micromoles of neuramic acid/minute (units)/g wet faeces (mean values); † number of samples with their highest activity at that specific pH/number of tested samples.

Figure 1: Proteolytic activity at pH 5.2–7.6 in faeces from nine patients without pouchitis.

D-galactosidase, however, there were several individual differences, as shown in Table II.

Figure 1 shows that the pH dependence of the proteolytic activity was similar in each tested sample. At pH 6.8 and 7.6 the activities were respectively three and four times higher than at pH 5.2 (p<0.001 for both comparisons).

Effect of pH on Mucin Degradation

The incubation of the pouch flora with hog gastric mucin at pH 7.2 resulted in an active breakdown of the mucin for each of the tested parameters (Fig 2). At pH 7.2 the fucose part of the mucin had disappeared for nearly 60% within two hours of incubation, compared with 30% at pH 5.2. The removal of 60% of the hexoses and hexosamines from the mucin took four hours of incubation at pH 7.2, but only 35% was degraded at pH 5.2. In addition blood group antigens A and H were much more actively removed from the mucin at a pH 7.2 than at pH 5.2. The degradation of the protein part of the mucin was not as fast as the degradation of the carbohydrate part. After four hours incubation nearly half of the proteins (43%) were found to be cleaved at pH 7.2, but only 10% at pH 5.2.

Mucin degradation was determined in five experiments with faeces from five different subjects (four control patients and one patient who required daily 5-ASA). In each experiment mucin degradation was inhibited at a low pH (5.2) compared with pH 7.2; p=0.01–0.05 for the carbohydrate and the protein compounds.

The flora from three patients (one of them was the patient who required daily 5-ASA) caused a similar rate of mucin degradation (reflected by the median values in Fig 2). The flora of patient 4 degraded the hexoses part of the mucin slowly and gradually until a 60% loss after eight hours of incubation at pH 7.2, but hardly any protein or hexosamines were cleaved from the mucin. Patient 5, however, showed an extremely fast degradation rate: within two hours of incubation 90–95% of the mucin, as well as the carbohydrates as the protein fraction was broken down at pH 7.2. For both patients the degradation at pH 5.2 was slower.

In summary, it was found that mucin is broken down at a pH 7.2 twice as fast as at pH 5.2.

Discussion

The cause of pouchitis is still unknown. The good response to antibiotics supports the hypothesis that faecal stasis in the reservoir, with, consequently an increase in bacterial numbers compared with the normal ileum, plays an important part in the aetiology. Several flora related parameters, such as bacterial metabolism of bile acids and volatile acid concentration, have been associated with pouch inflammation and pouchitis. By bacterial dehydroxylation of primary bile acids the secondary bile acid deoxycholic acid is formed, which may reduce the water and salt transport through the epithelial cells. Reduced values of short chain fatty acids in pouch effluent have found to be...
correlated with mucosal villous atrophy and pouchitis.34-36 Bacterial volatile acids, especially butyric acid, are important energy substrates for colonic epithelial cells37 and a lack of this acid can make them more susceptible to inflammation. Recently, the response to metronidazole has been attributed to its capacity to remove oxygen radicals, which are increased in ischaemia.38 It is still not possible for a definite conclusion to be stated.

Since the construction of the first ileal reservoirs there has been a great interest in the development of the flora. The results of studies, however, on the composition of the pouch flora from both patients without pouchitis and patients with pouchitis are contradictory.39-44 This study shows that the total number of bacteria in patients with and without pouchitis (about 1·5 × 10^9 bacteria/g wet faeces) is 10 times higher than in ileostomy effluent.45-48 This is not surprising for instead of free passage of the ileum contents in patients with a conventional ileostomy, the contents accumulates in the pouch for several hours, dependent on the stool frequency of the patients, which is 4–8 times/24 h.49 In faeces of healthy subjects, the total number of bacteria is about 10 times higher than in pouch effluent.49-51 Faeces is the final product of a 20–140 hour stay in the large intestine and of many complicated biochemical events in the different regions. The ecological significance of the ileum reservoir is probably best compared with the caecum and the ascending colon. In this part of the intestine the largest amounts of substrates for bacterial metabolism are available, including dietary residues and host produced substances like mucus glycoproteins, exfoliated epithelial cells, and pancreatic secretions.52 Only few data are available for bacterial numbers and fermentation in the human caecum. Mcfarland53 cultured from two sudden death victims 1 and 4 × 10^9 bacteria/g dry caecal contents. These are about the same numbers, after conversion to dry weight, that we found in the ileum reservoirs. Furthermore the pH in caecum and colon ascendens was 5·9 and 5·8 respectively (subject 1), and 5·1 and 4·9 respectively (subject 2). This is in line with the low pH measured in the pouch output from the control patients. The low pH in both the caecum and ileum reservoir results from the high metabolic activity of the anaerobic flora and is probably the combined result of the bacterial production of short chain fatty acids (butyric, propionic, and acetic acid) and other organic acids (lactic acid, succinic acid) and the buffering capacity of the ileum contents (by bicarbonate secretions of pancreas, liver, and epithelial cells).

The delicate mucosal epithelial cells from the ileum are protected by a layer of mucus glycoproteins from mechanical injury, the action of antigens and toxins, and the invasion of enteric bacteria. The chief constituent of the intestinal mucus, secreted by goblet cells, consists of a glycoprotein that contains up to 85% carbohydrates. Common parts of the carbohydrate are fucose, galactose, NAc-glucosamine, NAc-galactosamine, NAc-neuraminic acid, and mannos in α or β glycoside linkage.54-55 Because it is not dependent on oral intake and is always available in roughly the same amounts, mucus serves as an important energy source for the bacterial flora in the intestine. The degradation depends on the action of bacterial glycosidases, releasing monosaccharides from the polysaccharide chains that surround the protein core of the glycoprotein.56 This study shows that glycosidase activity is present in the pouch and it is probable that the carbohydrate part of the mucus glycoprotein is removed by their action. Degradation of the mucus may be continued, when the protein core of the glycoprotein is no longer protected after the removal of the oligosaccharide side chains, by proteolytic enzymes from the liver, pancreas, and brush border.57

Our experiments show that on artificial substrates the proteolytic activity is strongly inhibited at a low pH (5·2–5·8). This pH resembles the pH in the pouch of the control patients (pH 5·4). On their p-nitrophenyl glycoside substrates some bacterial glycosidases were inhibited, but others were stimulated in their activity. Nevertheless the pouch flora degraded two times more of a natural substrate, such as hog gastric mucin (the carbohydrate part) or sugars (the protein part), at a neutral pH compared with a low pH. The individual differences in degradation rate found is probably attributed to differences in flora composition. The significance of these data is that in a healthy pouch a low pH maintained by the flora might delay the mucin breakdown.

This might be the situation in a healthy pouch. The pouch flora degrades active mucus glycoproteins, but there is a balance between glycoprotein secretion by the goblet cells and the degradation by the flora. The low pH in the pouch, which is created by the bacterial metabolites, might be an important factor in inhibiting mucus breakdown. The homeostasis in the pouch might be dependent on the stability of the flora. In the case of pouchitis homeostasis is not maintained: we found that the flora composition had changed, a part of the anaerobes had disappeared in favour of the aerobes, the ratio anaerobes to aerobes moved from 143 to 2. This is in agreement with the findings of Onderdonk et al58 who cultured significantly more aerobes from tissue biopsy samples from patients with pouchitis than from control patients. The instability of the flora of patients with pouchitis was evident as several species that we had not cultured from the faeces of control patients occurred, such as fungi, Candida species apart from Candida albicans and Bacillus species. Furthermore Clostridium perfringens was found in nearly every pouchitis sample, sometimes in very high numbers (up to 2 × 10^9/g output), but only in a few samples from the control patients. The same phenomenon was seen by Brandi.59 We cannot exclude the possible role of C. perfringens in the cause of pouchitis as enterotoxigenic strains of C. perfringens have been defined as an important cause of infections and antibiotic associated diarrheaa.60-62 The screening of the patients’ faeces for toxins might give a definite answer. The large differences in flora composition between two samples from the control patients suggests that in addition the microbial balance in their pouches is unstable. Potential
Pouchitis: result of microbial imbalance?

Pouchitis patients possibly have flora that degrades mucin quickly (as patient 5) and it is likely that patients with flora that does not degrade much mucin do not develop pouchitis (see patient 4) for the period their flora remains stable.

Because anaerobes are largely responsible for the production of fatty acids, it is possible that in pouchitis the fermentation patterns have been changed. Claussen and also Wishmeyer found decreased amounts of volatile fatty acids in output from patients with pouchitis. A consequence might be a pH that is no longer acid, but more neutral. The comparatively high pH in patients with pouchitis might be regarded as a symptom of the instability of the flora. In this situation mucus degradation is possibly faster than production. The pouch content is a large reservoir of bacterial antigens, which may stimulate the immune system, and cause a local inflammatory reaction, when the integrity of the mucosa is affected. After the loss of (parts of) the mucus layer, the epithelial cells may become accessible to the action of host derived proteases. It has been postulated that pancreatic proteolytic enzymes have an inhibitory effect on intestinal healing processes and promote progress of haemorrhagic intestinal necrosis. Impairment of the protective function of the ileal pouch mucosa makes the pouch epithelium more susceptible to accumulating bacterial toxins, deoxycholic acid, oxygen radicals, and shortage of butyric acid. Furthermore, the invasion of enteropathogenic micro-organisms is no longer inhibited when the pH become more neutral (loss of colonisation resistance).

Patients that have an operation for ulcerative colitis in principle develop pouchitis. There is evidence that one particular species of mucin, which was defined by oligosaccharide side chain composition, is deficient in the colon of patients with ulcerative colitis. In the pouch there is a change from small bowel type mucin (high degree of sialylation) to colonic type mucin (more sulphated). It is possible that the colonic mucus and consequently the changed pouch mucus of patients operated for ulcerative colitis, is more susceptible to degradation by the combined action of bacterial glycosidases and pancreatic proteases, than pouch mucus from patients operated for familial adenomatous polyposis.

Our conclusion is that pouchitis is possibly the result of instability of the flora in the pouch of susceptible patients (ulcerative colitis), which causes homeostasis to disappear (dysbiosis), and the protection of the pouch epithelium by the mucus layer becomes affected by increased activity of bacterial and host derived enzymes. The pouch flora in general is probably very susceptible to influences from outside, such as dietary variation and bacterial contamination, which is expressed by instability that may lead to pouchitis. After treatment of pouchitis with metronidazole, a state of great imbalance is again created and new flora have to colonise the pouch. We think that a stable flora with a normal fermentation pattern (including a low pH) might prevent pouchitis. This might be realised by oral ingestion of lactobacilli (probiotics), which has been proved to be successful in the treatment and antibiotic prevention of intestinal infections and antibiotic associated diarrhoea.4-6

664

Ruseler-van Embden, Schouten, van Lieshout

tory manual. 4th ed. Blacksburg: Virginia Polytechnic
Institute and State University, 1977.
30 Bregenzer H, Bergland B, Kock NG. Ileostomy output of gas
and faeces before and after conversion from conventional to
31 Ruseler-van Embden JGH, van Lieshout LMC. Increased
faecal glycosidases in patients with Crohn’s disease.
32 Warren L. The thiobarbituric acid test of sacial acids. J Biol
33 Ruseler-van Embden JGH, van Lieshout LMC. Increased
proteolysis and leucine aminopeptidase activity in faeces of
34 Miller KS, Hoskins IG. Mucin degradation in human colon
ecosystems. Faecal population densities of mucin-degrading
bacteria estimated by a ‘most probable number’ method.
35 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein
measurement with Folin phenol reagent. J Biol Chem 1951;
193: 265-75.
36 Ghysen J-M, Tippers DJ, Storiminger JL. Enzymes that
degrade bacterial cell walls. Method Enzymol 1966; 8:
685-99.
37 Mokrasch LC. Analysis of sugar phosphates and sugar
mixtures with anthrone reagent. J Biol Chem 1954; 208:
55-9.
38 Ohse Z, Jettles LB. A specific color reaction for methyl-
pentoses and a spectrophotometric micromethod for their
39 Ruseler-van Embden JGH, van der Hel R, van Lieshout
LMC. Degradation of intestinal glycoproteins by Bac-
1987.
41 Naimy D, Johnston D, Williams NS, King J, Burkeish L,
Brooks K. Changes in the absorption of bile acids after
total colectomy in patients with an ileostomy or pouch-anal
42 Clausen MR, Twede M, Mortensen PB. Short-chain fatty acids
in pouch contents from patients with and without pouchitis
after ileal pouch-anal anastomosis. Gas troenterology 1992;
103: 1144-53.
43 Witschnery PF, Tremaine WJ, Haddad AC, Ambrose WL,
Pemberton JH, Phillips SF. Gastroenterology 1991; 100:
A848.
44 Roodiger WEW. Role of anaerobic bacteria in the metabolic
45 Levin KE, Pemberton JH, Phillips SF, Zimmerns AR,
Pezim ME. Role of oxygen free radicals in the etiology of
46 Fingold SM, Satter VL, Boyle JD, Shimada K. The normal
flora of ileostomy and transverse colostomy effluents. J
47 Ruseler-van Embden JGH, Kool J, van Lieshout LMC,
Haazen MP. Enzymatic activity in ileostomy effluent
with reference to the characteristic flora: a study using dogs.
48 Wexner SK, Jensen L, Rothenberger DA, Douglas Wong W,
Goldberg SM. Long-term functional analysis of the ileoanal
49 Holdeman LV, Good IJ, Moore WEC. Human fecal flora:
variation in bacterial composition within individuals and a
possible cause of antibiotic-associated diarrhea. Appl Environ
50 Moore WEC, Holdeman LV. Human fecal flora: the normal
961-79.
51 Cummings JH, Macfarlane GT. The control and conse-
quences of bacterial fermentation in the human colon. J Appl
52 Macfarlane GT, Gibson GR, Cummings JH. Comparison of
fermentation reactions in different regions of the human
53 Allen A. Structure and function of gastrointestinal mucus.
54 Allen A, Leonard A. Mucus structure. Gastroenterol Clin
55 Labeisse CL. Structure of gastrointestinal mucus: searching
56 Vareym EP, Hoskins LC. Degradation of gut mucins;
carbohydrate side chains protect the polypeptide core
from pancreatic elastase. Gastroenterology 1978; 74:
1108.
57 Borriello SP, Larson HE, Welch AR, Barclay F, Stringer MF,
Bartolomeo BA. Enterotoxigenic Clostridium perfringens:
possible cause of antibiotic-associated diarrhea. Lancet
58 Larson HE, Borriello SP. Inflammatory diarrhea due to
59 Luzzi I, Capirossi A, Bisicchia R, Cammaraghi R,
Mastrandandino P. A sporadic case of diarrhea due to
enterotoxigenic Clostridium perfringens. Microbial Ecology
in Health and Disease 1988; 1: 49-70.
60 Høgest H, Haglund U, Zederfeldt B. Beneficial effect of
proteinase inhibitors on early breaking strength of intestinal
61 Bounous G, Menard D, de Medicis E. Role of pancreatic
proteases in the pathogenesis of ischemic enteropathy.
62 Podolsky DK, Iselbacher KJ. Glycoprotein composition of
colonic mucosa. Specific alterations in ulcerative colitis.
Gastroenterology 1984; 87: 991-8.
63 Corfield AP, Warren BF, Bartolo DCC, Wagner SA, Clamp
JR. Mucin changes in ileostomal pouches monitored by
79: 539-46.
64 Reid G, Bruce AW, McGroarty JA, Cheng KJ, Corterton JW.
Is there a role for lactobacilli in prevention of urogenital
and intestinal infections? Clin Microbiol Rev 1990; 3:
335-44.
65 Goldin BR, Gerbach SL. Probiotic for humans. Probiotics.
London: Chapman and Hall, 1992; 355-76.
Pouchitis: result of microbial imbalance?

J G Ruseler-van Embden, W R Schouten and L M van Lieshout

Gut 1994 35: 658-664
doi: 10.1136/gut.35.5.658

Updated information and services can be found at:
http://gut.bmj.com/content/35/5/658

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/