Budd-Chiari syndrome in a young patient with anticardiolipin antibodies: need for prolonged anticoagulant treatment

R J Th Ouwendijk, J C Koster, J H P Wilson, J Stibbe, J S Lameris, W Visser, J-P Benhamou

Abstract

The case of a 20 year old woman is reported with Budd-Chiari syndrome in whom lupus anticoagulant and anticardiolipin antibodies were shown; treatment with oral anticoagulants induced a considerable improvement. This treatment was interrupted after one year; interruption was followed by redevelopment of ascites. Further treatment with anticoagulants was continued for five years with noticeable improvement. When treatment with oral anticoagulants was stopped because of pregnancy, the patient redeveloped ascites and had a spontaneous miscarriage. Subsequently, treatment with oral anticoagulants was reintroduced and again resulted in noticeable improvement. In conclusion patients with Budd-Chiari syndrome should be tested for lupus anticoagulatia and anticardiolipin antibodies. Budd-Chiari syndrome resultant from this cause may have a good response to treatment with oral anticoagulants; this treatment should be maintained permanently, and pregnancy in such patients may initiate serious difficulties.

Case report

A 20 year old woman was well until two weeks before admission, when she developed right upper abdominal pain, vomiting, and fever. She had been taking oral contraceptives for several years. On admission, she had a normal blood pressure, body temperature of 38°C, and tenderness in the right upper abdomen, no signs of ascites were noted. Laboratory examination showed the following values: haemoglobin 5.9 mmol/l; packed cell volume 40%; white blood cell count 6.4 x 10^9/l; platelet count 1.8 x 10^9/l; reticulocytes 5%; prothrombin time 13.0 s (control, 11 s); activated partial thromboplastin time (aPTT) 41 s (control 30–39 s), serum alanine aminotransferase 18 U/ml (N<30), alkaline phosphatase 41 U/l (N=120), γ-glutamyltransferase 57 U/l (N<30), total bilirubin 37 µmol/l.

Ultrasonography showed a thickened gall bladder wall, which was tender.

On the probable diagnosis of acalculous cholecystitis, a laparotomy was performed. The gall bladder was normal. The right liver lobe was red and swollen, the spleen slightly enlarged, there was no ascites. A biopsy specimen was taken from the right lobe of the liver, which showed only dilated sinusoids.

Two weeks later she developed ascites with a protein content of 2 g/l. During venous angiography of the hepatic veins, only the vein of the caudate lobe could be visualised. The inferior cava was patent, the free hepatic venous pressure was 14 mm Hg, wedged hepatic venous pressure 30 mm Hg, and right atrial pressure 14 mm Hg. By magnetic resonance imaging the left and middle hepatic veins (arrows) and a collateral vessel (open arrow) draining the right liver lobe are visualised as bright structures. The right hepatic vein is obliterated.
were visualised. The right hepatic vein was obliterated (Figure).

Further investigation of the cause of the Budd-Chiari syndrome was performed. Antibodies against extractable nuclear antigen, antinuclear antibodies, rheumatoid factor, and Thrombomodulin paladium haemagglutination antibodies could not be detected. The direct and indirect Coombs’ test and Ham’s test were negative. Antithrombin III, protein S and C concentrations were normal. The prothrombin time was normal, while aPTT was slightly raised. Lupus anticoagulant and antiphospholipid antibodies were found. Culture of bone marrow with and without erythropoietin showed a normal growth pattern. We concluded that this patient had a Budd-Chiari syndrome because of lupus anticoagulant and antiphospholipid antibodies. Ascites was successfully treated with paracentesis and diuretics. Coumadin treatment was started. After six months, the diuretics were stopped without recurrence of ascites. After one year we decided to stop the oral anticoagulants.

Within a month she redeveloped ascites. After the oral anticoagulation treatment and diuretics were started again, she remained well for another five years. Repeat magnetic imaging showed no progression of the Budd-Chiari syndrome. She then wanted to have a baby despite having been informed of the risk of deterioration of the Budd-Chiari syndrome and obstetrical complications.

After several months, the risk of venous thrombosis and haemorrhage of four weeks’ duration. The oral anticoagulants were stopped; heparin 7-500 IE twice daily subcutaneously was started. Fourteen days later she had the same complaints as at the first admission five years previously. On physical examination no abnormalities were found. Laboratory investigations showed several abnormalities. Haemoglobin, 6.7 mmol/l; packed cell volume, 45% white blood cell count, 2 x 10^9/l; platelet count 5-6 x 10^9/l; prothrombin time, 13 s; aPTT, 43 s; fibrinogen 4.6 g/l; fibrin degradation products, 200 μg/L. The lupus anticoagulant test was positive. IgG antiphospholipid antibodies were positive 98 IU/l (normal 0-31) as were IgM antiphospholipid antibodies 26 IU/l (normal 0-12); ultrasonography showed a uterus of six weeks pregnancy with no signs of fetal heart action. Treatment with intravenous heparin and prednisone 80 mg daily was started. Ascites was successfully treated with diuretics. In the following days spontaneous miscarriage occurred. Within six weeks all laboratory results returned to normal. Two months after the miscarriage, she was well. Platelet count was 140 x 10^9/l with 25 mg prednisone daily; a reduction to 20 mg prednisone daily was followed by an acute drop of the platelet count to 43 x 10^9/l, which became normal after treatment with 60 mg prednisone daily. At 12 months after the miscarriage she did not have ascites, although she had stopped using diuretics, and platelet count was 141 x 10^9/l (with 5 mg prednisone daily). The patient still had high concentrations of IgG antiphospholipid antibodies 81 IU/l and IgM antiphospholipid antibodies 17 IU/l.

Discussion

The aetiology of the Budd-Chiari syndrome can be classified in five groups according to the mechanism of obstruction, namely primary lesions of the main hepatic veins, benign or malignant invasion of the hepatic veins, obstruction of the inferior vena cava, and veno-occlusive disease.

In our patient computed tomography and magnetic resonance imaging showed thrombosis of two hepatic veins. Thrombosis of the hepatic veins can result from an underlying primary myeloproliferative disorder, the use of oral contraceptives, pregnancy, postpartum state, paroxysmal nocturnal haemoglobinuria, the presence of lupus anticoagulant, and several miscellaneous disorders such as connective tissue diseases. A myeloproliferative disorder was excluded by a normal bone marrow aspirate and normal colony formation of the erythroid cells in an erythropoietin poor medium. A normal acid Ham’s test, normal coagulation parameters apart from a prolonged aPTT and negative rheumatoid and lupus erythematosus serology in our patient excluded paroxysmal nocturnal haemoglobinuria, diffuse intravascular coagulation, and rheumatic disorders.

In our patient two possible causes for the hepatic vein thrombosis were found, namely the use of oral contraceptives and the presence of lupus anticoagulant and antiphospholipid antibodies. Long-term use of oral contraceptives increases the risk of venous thrombosis by exacerbating an underlying thrombogenic condition such as paroxysmal nocturnal haemoglobinuria or a myeloproliferative disease. As mentioned such abnormalities were not found in this patient. The most likely cause in our patient is therefore the lupus anticoagulant and antiphospholipid antibodies. Lupus anticoagulant and antiphospholipid antibodies are both antiphospholipid antibodies.

Antiphospholipid antibodies are associated with venous and arterial thrombosis and recurrent miscarriage.
anticoagulant, because they are more sensitive and less subject to interobserver errors or variations in methodology than tests for lupus anticoagulant.11 20-25

The treatment of choice in patients with Budd-Chiari and the presence of lupus anticoagulant and anticardiolipin antibodies is coumarin anticoagulation.4 6 22 Our patient was successfully treated by coumarin anticoagulation; ascites was treated by paracentesis and diuretics. It was possible to stop the diuretics after six months of treatment.

The longterm prognosis of patients with the Budd-Chiari syndrome resulting from lupus anticoagulants is not well known. Several reports with long survival after the diagnosis have been described; however, rapid deterioration and death have also been reported.4 6

Pregnancy is a risk factor for the development of Budd-Chiari syndrome; but, on the other hand, several cases of successful pregnancy in patients with the Budd-Chiari syndrome have been reported.26 The presence of lupus anticoagulant and the high concentrations of anticardiolipin are associated with venous and arterial thrombosis, increased fetal loss or recurrent miscarriage.11 17 20 Despite being warned about the risks our patient became pregnant and despite subcutaneous heparin the patient had a miscarriage at 6 weeks of pregnancy and developed ascites and severe thrombocytopenia.

High concentrations of IgG anticardiolipin antibodies are closely correlated by recurrent fetal loss, thrombocytopenia, and thrombosis and have a high predictive value of renewed problems in subsequent pregnancies.11 23 Our patient has high IgG anticardiolipin antibodies, suggesting again problems in another pregnancy. To prevent complications in patients with lupus anticoagulant and high concentrations of anticardiolipin antibodies some have advocated aspirin, heparin, and corticosteroids.20 23 24 27 28 The role of corticosteroids in the treatment of this condition is not clearly defined.20 22 24 28

The good clinical response to oral anticoagulants in our patient illustrates the importance of testing patients with Budd-Chiari syndrome for anticardiolipin antibodies and lupus anticoagulant, and, if positive, of giving prolonged oral anticoagulation.

The authors thank Mrs M Awad-Langstraat for her prompt and accurate typing of the manuscript.

3 Hartman RC, Luther AB, Jenkins DE, Tenorio LE, Saba Sr. Fulminant hepatic venous thrombosis (Budd-Chiari syndrome) in paroxysmal nocturnal hemoglobinuria. A spectrum from asymptomatic occlusion of hepatic venules to fatal Budd-Chiari syndrome. Gastroenterology 1987; 93: 569-75.
Budd-Chiari syndrome in a young patient with anticardiolipin antibodies: need for prolonged anticoagulant treatment.
R J Ouwendijk, J C Koster, J H Wilson, J Stibbe, J S Lameris, W Visser and J P Benhamou

Gut 1994 35: 1004-1006
doi: 10.1136/gut.35.7.1004

Updated information and services can be found at:
http://gut.bmj.com/content/35/7/1004

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/