Combined percutaneous and endoscopic procedures for bile duct obstruction

Deep cannulation of the bile duct is essential for the successful treatment of biliary obstruction. Even the most experienced endoscopist cannot always achieve this. Identifiable causes of failure include previous gastric surgery and periampullary diverticulum, but often it is simply not possible to cannulate the bile duct selectively. Successful cannulation can be increased by using intravenous glucagon or sublingual trinitrin to relax the choledochal sphincter. A hydrophilic, polymer coated guidewire can negotiate a tortuous sphincter segment and a finely tapered cannula is useful when there is a very small papillary orifice. Needle knife papillotomy often works when all else fails.

Tumours at any level in the bile duct system may be impossible to negotiate. Success rates can be improved by using a guidewire with a preformed curve. Hydrophilic polymer coated guidewires are particularly valuable, especially if used in conjunction with a stiff catheter such as a biliary dilator. These guidewires will slide through even the tightest, most tortuous stricture, which cannot be accessed by using a standard Teflon coated wire. Unilateral stent placement is adequate treatment for most patients with tumours of the hepatic ducts, but it may be better to place stents bilaterally. This can only be achieved in a few, although stiffer catheters, preformed guidewires, and hydrophilic guidewires all help. A percutaneous transhepatic approach can be useful when it proves impossible to negotiate an obstruction whether physiological, anatomical or pathological.

Percutaneous insertion of plastic stents for malignant bile duct obstruction has now largely been overtaken by the endoscopic approach. This is not only because of the wide availability of endoscopic retrograde cholangiopancreatography (ERCP), but mainly because of the higher complication rate of percutaneous stenting, which is related to the size of the transhepatic track necessary to undertake the procedure. Percutaneous transhepatic assistance for the endoscopist was initially described for the treatment of gall stone disease, but it was soon clear that it was possible to insert a 10 or 12 French stent endoscopically using a transhepatic guidewire provided by the radiologist who need only make a 5 or 6 Fr track through the liver.

Other studies have confirmed the value of the combined percutaneous and endoscopic procedure with success rates for stent placement approaching 100%. The complication rate, as would be expected, is higher than for endoscopic stent insertion and is intermediate between endoscopic and percutaneous palliative procedures. The main complication is cholangitis.

How soon should percutaneous transhepatic cholangiography (PTC) be performed after endoscopic stent insertion has failed? No data exist to answer this question unequivocally, but if an obstructed duct system has been contaminated with contrast medium injected during ERCP, then percutaneous biliary drainage should be provided as soon as possible, probably within 24 hours. Otherwise there is no urgency, but it is probably wise for the patient to continue receiving intravenous antibiotics and a careful check kept on fluid balance and renal function. Some advocate that when ERCP fails, PTC should be performed immediately, followed by repeat ERCP for completion of the combined procedure at the same time. This requires an extremely flexible ERCP list and a patient with a great deal of stamina. My preferred option is to perform PTC and establish external drainage within 48 hours of failed ERCP and then to proceed to ERCP and stent insertion in the next 48 hours. In this way the patient is not submitted to prolonged, possibly uncomfortable procedures and a short period of external drainage is provided before attempts are made to negotiate the stricture. While many strictures can be negotiated at the time of the initial PTC, nearly all are negotiable after a short period of drainage, particularly if hydrophilic polymer coated wires, straight and angled torque control catheters are available. In addition, if there is possible bacterial contamination of the biliary system, drainage for a short period reduces the risk of severe cholangitis, which can occur if prolonged attempts are made to negotiate the stricture at the initial PTC. There is no published evidence yet to support a preference for either a one stage or a multiple stage combined procedure. A percutaneous external drainage catheter left in position for more than a week becomes an irritation and a frustration to the patient with increasing risk of infection of the catheter entry site, so that a multiple stage procedure should be expedited to minimise these problems. Prophylactic antibiotics, which should be started before the initial ERCP, should be continued until drainage is established. Mezlocillin or piperacillin seem best. Nevertheless, cholangitis will still
occasionally despite antibiotics, but is usually mild and easily con-
trolled by adequate bile drainage or by a change in antibi-
totic treatment based on the results of culture.

Sedation and analgesia are essential during percutaneous
procedures. While midazolam is effective sedation for
ERCP, it is less successful for PTC, as the patient can
become restless, particularly if the procedure causes dis-
comfort. I find a combination of lorazepam and droperidol
given orally about 90 minutes before the procedure
in a 22G needle is best inserted in the ante-
rior axillary line, angled a little dorsally towards the porta
hepatis. The puncture site should be as far cranially as the
costophrenic sulcus will permit and the needle tip should be
directed caudally to enter either segment 6 or 7 ducts to
provide a smooth curve without sharp angulation for the
approach to the common duct. If a left duct approach is
necessary, then puncture of the anterior segmental duct
(segment 3) in the left lobe should be undertaken peripheral-
ly to provide a stable long transhepatic approach to a left
hepatic duct lesion. Selection of a duct for puncture is best
made using ultrasound guidance, particularly when
approaching the left duct system. Having gained access to
the bile duct with a sheathed needle large enough to take a
0.035 inch guidewire, it is worthwhile decompressing the
duct system before exchanging the sheath for a drainage
catheter over the guidewire. If the duct system is not
decompressed, bile will leak into the peritoneum during
catheter exchange, often causing considerable discomfort
to the patient.

Once the obstructing lesion and the papilla have been
negotiated, and a guidewire and catheter placed in the
duodenum, the endoscopist using an endoscope with a
biopsy channel large enough to take at least a 10 Fr stent,
can grasp the tip of a 450 cm guidewire using a stone
extraction basket or grasping forceps. The guidewire should
be grasped at least 3 cm from the tip of its floppy end so
that the wire doubles as it is withdrawn up the channel
of the endoscope. This reduces the risk of damage to the
endoscope biopsy channel. The guidewire should be fed
into the percutaneous catheter by an assistant, while a
second assistant retracts the wire gently from the endoscope
biopsy port. It is essential that throughout the procedure, a
clot can beMerchant

Gastroenterology
2 Tweddle DEF, Martin DF. Needle knife papillotomy for endoscopic sphinc-

Downloaded from http://gut.bmj.com/ on May 2, 2017 - Published by group.bmj.com
Combined percutaneous and endoscopic procedures for bile duct obstruction.

D F Martin

Gut 1994 35: 1011-1012
doi: 10.1136/gut.35.8.1011