Autoimmunity and chronic pancreatitis

EDITOR,—It was with considerable interest that I read the article by Jalleh et al (Gut 1993; 34: 1452–7) on histocompatibility antigen expression in human chronic pancreatitis. The authors assessed the morphology of the pancreas and class I (HLA) and II (HDL-DR) histocompatibility antigen expression in surgical specimens obtained from a large series of patients with chronic pancreatitis (93 patients with chronic pancreatitis undergoing surgical resection for the presence of neuroendocrine tumours of the head of the pancreas and with four patients with chronic obstructive pancreatitis. The authors showed that HLA expression was obtained from patients suffering from chronic pancreatitis: (a) the disease was focal in distribution; (b) in the early stage of the disease neither protein plug nor calcification of main ducts were identified; (c) in the later stage of the disease sections comprised only a few residual epithelial elements together with nerves and vascular structures in dense fibrous connective tissue, together with growth of focal calcifications; (d) in the early stage of the disease HLA class I expression by pancreatic exocrine epithelial cells was seen in 82% of chronic pancreatitis specimens, HLA class II in 66%, and both in 57%, whereas no major histocompatibility complex expression was identified in control specimens; (e) in the positive specimens, expression was confined to ductal and ductular (inter and intra lobular) epithelium with no staining of acinar cells; (f) T lymphocyte infiltration was significantly more prominent in chronic pancreatitis as compared with control specimens. These data confirm those obtained in a study conducted by our team in Verona,1 which showed increased HLA-DR expression in pancreatic specimens from patients with chronic pancreatitis, together with the presence of T lymphocyte infiltration foci, mainly surrounding the pancreatic ducts.

These reports seem to lend support to the hypothesis recently expounded by Cavallini2 suggesting that primary (that is, non-obstructive) chronic pancreatitis is pathogenetically attributable to an obliterating primary inflammatory fibrosis of the main or secondary pancreatic ducts, or both. The fibrosis may be induced by chemical assessors released by T lymphocytes activated by aberrant expression of HLA. This phenomenon, which presents a patchy distribution, may be responsible for partial or total obstruction of the outflow of pancreatic juice, which in turn causes stasis facilitating the intraductal formation of protein plugs and the subsequent precipitation of calcium salts. Several experimental studies have, in fact, shown that chronic obstructive disease of the pancreatic duct alone is capable of causing the formation of intraductal stones in the dog3 and in the rat.4

Although the data of the study by Jalleh et al need to be viewed with caution, as the authors themselves recommend, as aberrant ductal HLA expression may be secondary to an inflammatory phenomenon, we feel we should stress the fact that it was found in the early stage of the disease. Aberrant HLA expression was detected, in fact, in specimens with a histological picture compatible with early disease abnormalities. This mechanism therefore would seem to constitute an early pathogenic factor in development of the disease.

As we see it, the abnormal HLA expression may result from a genetic defect. According to its expressivity, this genetic defect may be responsible, in part, for the penetrance for the juvenile forms of the disease (previously classified as hereditary) or, if there is less penetrance, for the classic form of disease, which manifest themselves above the age of 30 (adult chronic pancreatitis). Exogenous factors epidemiologically associated with chronic pancreatitis may contribute to HLA expression in genetically predisposed subjects (alcohol), or even accelerate the formation of intraductal stones (alcohol, smoking, diet) and thus have an impact on the progression of the disease. One last finding that should perhaps be emphasised is the lack of progression or intraductal calcifications in specimens compatible with early disease abnormalities. This finding, together with a number of clinical features, such as the low incidence of calcifications in chronic alcoholic pancreatitis in the early stages of the disease, and biochemical considerations, such as the lack of disease in alcohol abusers with lower concentrations of lithostatin and the presence of antiprotein microwides (that is, normal subjects, raises serious doubts as to the soundness of the phenopathogenic hypothesis put forward by the Marseille school. It is possible, as already postulated,2 that the lithostatin abnormalities may be no more than an epiphenomenon related to chronic stasis secondary to ductal obstruction, parallel to the reduced acinar exocrine production of all the other proteic enzymatic substances.

We believe that further more thorough studies of an immunological and immunohistochemical type need to be conducted to confirm the possible autoimmune pathogenesis of primary chronic pancreatitis.

G CAVALLINI
L FRULLONI
P BOVO
M FILIPPINI
Cattedra di Gastroenterologia, Università di Verona, Policlinico B o R o ma, 37134 Verona, Italy


Reply

EDITOR,—Thank you for the opportunity of replying to the letter by Cavallini et al in response to our paper describing the enhanced expression of major histocompatibility complex determinants in chronic pancreatitis. We agree with the authors’ suggestion that predisposition of certain subjects to chronic pancreatitis may be congenital in origin. We do not yet have sufficient information, however, to suggest that the enhanced HLA expression we have identified in early chronic pancreatitis may be due, in itself, to a genetic defect. An alternative possibility is that enhanced HLA expression may be an epiphenomenon of the chronic inflammatory process and that the primary aetiology may lie in a genetic defect affecting another, although possibly related, molecule. For example, any of the endogenous molecules participating in the intracytoplasmic processing of cellular peptides or proteins (such as the heat-shock proteins) might be affected and hence permit inappropriate targets of immune recognition to develop within pancreatic epithelial cells.

Recently obtained data shortly to be published from our laboratory have clearly shown the enhanced and differential expression of transforming growth factor β1 in human chronic pancreatitis. These findings support the suggestion of Cavallini et al that potent mediators of an evolving inflammatory process probably promote the profound fibrosing characteristic of chronic pancreatitis while they are not aetiological factors. In this respect, we believe that enhanced expression
Autoimmunity and chronic pancreatitis.

G Cavallini, L Frulloni, V Di Francesco, P Bovo, M Filippini and B Vaona

Gut 1995 36: 799-800
doi: 10.1136/gut.36.5.799

Updated information and services can be found at:
http://gut.bmj.com/content/36/5/799.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/