A population based study of *Helicobacter pylori* infection in a European country: the San Marino Study. Relations with gastrointestinal diseases

G Gasbarrini, S Pretolani, F Bonvicini, M R A Gatto, E Tonelli, F Méraud, K Mayo, G Ghironzi, G Giulianelli, M Grassi

Abstract

Helicobacter pylori is present worldwide but few large population studies exist on the epidemiology of the infection. A random cross sectional study was performed of *H pylori* infection in the adult population of San Marino, a European country with high gastric cancer rate, to assess its prevalence and to evaluate its relations with gastrointestinal disease. In 2237 subjects (77% of the initial sample) *H pylori* IgG antibodies were detected with enzyme linked immunosorbert assay (ELISA) and immunoblotting. A questionnaire including questions about occupation, place of birth, and smoking was given to all subjects. Dyspepsia, peptic ulcer, and gastric cancer in the subjects, relatives, and partners as well as use of drug, dental treatment/prostheses, and gastrointestinal endoscopies, were evaluated by multivariate analysis. *H pylori* prevalence was of 51%, increased with age from 23% (20–29 years) to 68% (≥70 years), and was higher among manual workers. *H pylori* was independently associated with ulcer (OR=1.63, 95% confidence intervals (CI)=1.16 to 2.27), *H₂* antagonists (OR=1.94, 95% CI=1.21 to 3.10), and benzodiazepines (OR=1.57, 95% CI=1.02 to 2.42), dental prostheses (OR=1.25, 95% CI =1.05 to 1.49), gastroscopy in the past five years (OR=1.50, 95% CI=1.05 to 2.14), peptic ulcer in siblings (OR=1.52, 95% CI=1.09 to 2.12), gastric cancer in father (OR=1.61, 95% CI=1.02 to 2.52). The association of seropositivity with history of ulcer, gastric cancer in family, gastroscopy, and *H₂* antagonists suggests that *H pylori* is an epidemiological key factor in the pathogenesis of gastro-duodenal diseases in this area.

Gut 1995; 36: 838–844

Keywords: *Helicobacter pylori*, population based study, gastrointestinal disease.

Helicobacter pylori infection is now recognised as one of the most common bacterial infections in humans.¹ It is considered the main aetiological factor for chronic gastritis² and also an important determinant for ulcerogenesis,³ especially in the longterm recurrence of duodenal and gastric ulcer diseases.⁴ ⁶ *H pylori* infection can persist for years and probably decades in most untreated patients⁷ and seroconversion or spontaneous eradication rates are low (1% or less) in the general population.⁸ Beside the risk of peptic ulcer, *H pylori* chronic infection can lead to gastric atrophy, a precursor of gastric cancer.⁸ This sequence of events has been shown in the early studies performed in Finland and Estonia,⁹ and chronic gastritis is an important independent risk factor for development of gastric cancer.¹⁰ Case control serological studies have clearly shown that the risk for developing gastric adenocarcinoma either in Eastern or Western countries was strongly associated with an *H pylori* infection already present 10 to 20 years before.¹¹ ¹³ Gastric cancer rates, however, differ significantly from country to country, from one region to another, and from one generation to the next, suggesting the effect of environmental rather genetic only factors. *H pylori* prevalence is higher in areas at high risk for gastric cancer¹⁴ and *H pylori* serum IgG is significantly associated with gastric cancer incidence and mortality in different countries.¹⁵ ¹⁶ To investigate the epidemiology of *H pylori* in an entire country of the European Mediterranean area, we performed a population based study of this infection, the San Marino *H pylori* study. The republic of San Marino is located in the

Figure 1: Gastric cancer death rates (men, 1980–3) in the Italian region Emilia-Romagna. The Republic of San Marino (RSM) is situated in the south eastern area of this region, where death rates reach the highest numbers (modified from Regione Emilia Romagna Mortality Atlas 1980–83, 1991 edition).
northern central part of the Italian peninsula and is considered the oldest republic of the
world. San Marino is known to be a country with a high gastric cancer rate, as the adjacent part of Emilia-Romagna in comparison with other areas of this region (Fig 1).

The San Marino *H pylori* study was done: (a) to determine the prevalence of *H pylori* infection and its relation with age, sex, and environmental factors such as place of birth, occupation, and smoking, (b) to identify any relation of *H pylori* with use of drugs or with previous gastrointestinal endoscopies, history of dyspepsia, peptic ulcer, and gastric cancer in the subjects of the study as well in their close relatives and partners.

Methods

Study population

Between June 1990 and July 1991 a cross sectional study was carried out on the adult population (≥18 years) living in the nine districts of the Republic of San Marino (17000 inhabitants). The Republic of San Marino was chosen for this study for several specific reasons: (a) the population sampled comprised all the adult inhabitants of a country with different social classes, professions, dietary habits, life styles, and where socio-demographic characteristics are very similar to those of Western European countries; (b) the population is very stable because of strict immigration laws as well as economic incentives for the residents; (c) in San Marino there is a higher incidence of clinically relevant gastroduodenal diseases, such as peptic ulcer and gastric cancer (25 of 10000 and 8 of 10000 per year, respectively, in 1990) with respect to Italy and other European countries.

Subjects for the study were selected from the National Register of residents in San Marino at January 1990, after a random stratified sampling with proportional allocation by age, sex, and district. Estimated prevalence of antibodies by age reported in a previous study were used to determine sample size.

Data on gastric cancer incidence during the period 1988 to 93 were obtained from the files of the endoscopy unit of the department of internal medicine of the San Marino Hospital.

Six months before starting the study, mass media were used to inform the San Marino population about the object of the study. A letter explaining the purpose of the study was sent to all the enrolles. A telephone call was made later to each subject to organise the medical interview at the division of internal medicine of the Istituto di Sicurezza Sociale of San Marino. All of the subjects who participated in the study were interviewed by the same physician using a specific standardised questionnaire. The questionnaire contained items concerning demographic, socioeconomic, and life style characteristics of the subject including age, sex, occupation, place of birth, smoking, use of drugs (such as non-steroidal anti-inflammatory drugs (NSAIDs), antacids, antibiotics, benzodiazepines, and *H* receptor antagonists). Previous diagnosis of dyspepsia (defined according to Colin-Jones et al) peptic ulcer or gastric cancer, as well as gastroscopic examinations and present gastrointestinal symptoms in the subject were recorded. The subjects were also questioned about the presence of gastrointestinal diseases in their family (mother, father, brother or sister, husband or wife). The study was approved by the ethical board of the Istituto di Sicurezza Sociale of San Marino and all subjects gave informed consent to interviews and blood collection.

Serological examination

Serum samples obtained from each subject at the time of interviewing were stored at −70°C. All samples were tested by enzyme linked immunosorbent assay (ELISA) for evaluation of IgG antibodies to *H pylori* proteins. The antigen used was a centrifuged sonicate of two strains, one from serogroup 1 and the other from serogroup 3 by the Lior schema.

A dilution of 1:100 of each serum was tested in duplicate, as previously described. The cut off value used to define a positive serum by ELISA was an optical density of 0.350, which gives a sensitivity of 95%. All positive samples were subsequently tested by immunoblotting. The tests were performed by a BioRad apparatus using whole cells antigens. An anti-IgG conjugate labelled with peroxidase was used at a dilution of 1/500 and 4-chloro-1-naphtol was used as a substrate. A sample was considered positive for *H pylori* IgG antibodies if a 120 000 to 130 000 molecular weight protein band was detected or if five bands among those usually present were visualised. Subjects with a positive immunoblot test were considered to have *H pylori* infection.

Statistical analysis

The data were analysed by a χ² test (Mantel-Haenszel) and logistic regression using the SPSS-X statistical package. The χ² test was used to examine the association between *H pylori* infection and the presence of several variables in a monovariate analysis and to choose the relevant variables to be used in multivariate analysis. Logistic regression was used to evaluate the relation between each independent variable of the study and the frequency of *H pylori* infection with adjustment for other variables.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Men (%)</th>
<th>Women (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>214</td>
<td>247</td>
<td>461</td>
</tr>
<tr>
<td>30-39</td>
<td>201</td>
<td>261</td>
<td>462</td>
</tr>
<tr>
<td>40-49</td>
<td>213</td>
<td>229</td>
<td>442</td>
</tr>
<tr>
<td>50-59</td>
<td>168</td>
<td>191</td>
<td>359</td>
</tr>
<tr>
<td>60-69</td>
<td>152</td>
<td>156</td>
<td>308</td>
</tr>
<tr>
<td>≥70</td>
<td>100</td>
<td>105</td>
<td>205</td>
</tr>
<tr>
<td>Total</td>
<td>1048</td>
<td>1189</td>
<td>2237</td>
</tr>
</tbody>
</table>

Table 1: Study population by age and sex (San Marino Study, 1990-1, n=2237)
Results

The sample population consisted of 2904 subjects, the response rate was 77%, and the final sample studied was of 2237 subjects.

Table I shows the age and sex distribution of the sample. Non-responders represented 23% of 2904 subjects sampled in this study and they were most often in the youngest and oldest class of age (33% and 36% respectively). The non-respondent sample consisted of 164 subjects. Non-responders showed a lower prevalence of positive history for gastritis and peptic ulcer than responders. No significant differences were seen between the two groups for other important surrogate variables.

H. pylori infection was detected in 1137 or 51% of the sample studied. Figure 2 shows the distribution of seropositivity by age. The prevalence of *H. pylori* infection was similar in both sexes (50-9% in males v 50-8% in females, \(p > 0.6 \)), thus the data are shown with sex merged. Seropositivity increases significantly with age \((p = 0.001) \), from 23% in the youngest group (20-29 years) to 68% in the oldest \((\geq 70 \text{ years}) \), in a roughly linear fashion from 20 years to 50 years. Figure 3 shows the prevalence of seropositivity in the nine districts of San Marino. It differed considerably from 40% in the Serravalle and Chiesanuova districts to 72% in the Acquaviva district. Table II shows the distribution of seropositivity in the different districts together with the corresponding gastric cancer incidence during the period 1988 to 93. With regard to place of birth, seropositivity was associated with southern regions for those subjects born outside San Marino \((p < 0.01) \), with a trend to increase from north to south (Table III). Data on socioeconomic characteristics showed that *H. pylori* infection tended to be more frequent among blue collar workers \((p > 0.001) \), especially those doing manual work (miners 78% of nine, road sweepers 65% of 37, plumbers/painters 61% of 83, house keepers 60% of 288, cooks 58% of 26) with

Table II

<table>
<thead>
<tr>
<th>Districts</th>
<th>Gastric cancer cases</th>
<th>H. pylori positive (%)</th>
<th>Gastric cancer rate/100 residents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquaviva</td>
<td>8</td>
<td>72.1</td>
<td>70.42</td>
</tr>
<tr>
<td>Faetano</td>
<td>5</td>
<td>68</td>
<td>70.12</td>
</tr>
<tr>
<td>Fiorentino</td>
<td>1</td>
<td>64.1</td>
<td>6.68</td>
</tr>
<tr>
<td>MonteGiardino</td>
<td>4</td>
<td>58.5</td>
<td>67.79</td>
</tr>
<tr>
<td>Domagnano</td>
<td>13</td>
<td>57.1</td>
<td>67.6</td>
</tr>
<tr>
<td>Borgomaggiore</td>
<td>15</td>
<td>53.4</td>
<td>32.88</td>
</tr>
<tr>
<td>Città</td>
<td>18</td>
<td>51.7</td>
<td>44.73</td>
</tr>
<tr>
<td>Chiesanuova</td>
<td>3</td>
<td>40.7</td>
<td>42.67</td>
</tr>
<tr>
<td>Serravalle</td>
<td>41</td>
<td>40.2</td>
<td>58.95</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Place of birth</th>
<th>Seropositive (n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Italy</td>
<td>16/21</td>
<td>76.2</td>
</tr>
<tr>
<td>Central Italy</td>
<td>197/310</td>
<td>63.5</td>
</tr>
<tr>
<td>North Italy</td>
<td>213/359</td>
<td>59.3</td>
</tr>
<tr>
<td>San Marino</td>
<td>676/1396</td>
<td>48.4</td>
</tr>
<tr>
<td>Foreign</td>
<td>391/51</td>
<td>23.1</td>
</tr>
<tr>
<td>Total</td>
<td>1137/2237</td>
<td>50.8</td>
</tr>
</tbody>
</table>

\(p < 0.01 \).
TABLE IV Results of logistic regression analysis applied to anamnestic factors and drug use (San Marino Study, 1990–1, n=2237)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Regression coefficient</th>
<th>Odds ratio</th>
<th>95% Confidence intervals</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspepsia*</td>
<td>0.002 (0.12)</td>
<td>1.00</td>
<td>0.79 to 1.27</td>
<td>0.986</td>
</tr>
<tr>
<td>Peptic ulcer*</td>
<td>0.486 (0.17)</td>
<td>1.63</td>
<td>1.16 to 2.27</td>
<td>0.005</td>
</tr>
<tr>
<td>H2 antagonists*</td>
<td>0.661 (0.24)</td>
<td>1.94</td>
<td>1.21 to 3.10</td>
<td>0.006</td>
</tr>
<tr>
<td>Antacids*</td>
<td>0.431 (0.24)</td>
<td>0.80</td>
<td>0.50 to 1.28</td>
<td>0.363</td>
</tr>
<tr>
<td>Benzodiazepines*</td>
<td>0.454 (0.22)</td>
<td>1.57</td>
<td>1.02 to 2.42</td>
<td>0.037</td>
</tr>
<tr>
<td>Dental treatment*</td>
<td>0.254 (0.10)</td>
<td>0.78</td>
<td>0.42 to 0.99</td>
<td>0.012</td>
</tr>
<tr>
<td>Dental prosthesis*</td>
<td>0.225 (0.09)</td>
<td>1.25</td>
<td>1.05 to 1.49</td>
<td>0.015</td>
</tr>
<tr>
<td>Gastrointestinal surgery</td>
<td>0.490 (0.10)</td>
<td>1.63</td>
<td>1.34 to 1.99</td>
<td>0.001</td>
</tr>
<tr>
<td>Last month</td>
<td>-0.344 (0.49)</td>
<td>0.71</td>
<td>0.27 to 1.85</td>
<td>0.482</td>
</tr>
<tr>
<td>Last 3 months</td>
<td>-0.342 (0.45)</td>
<td>0.96</td>
<td>0.40 to 3.22</td>
<td>0.026</td>
</tr>
<tr>
<td>Last 6 months</td>
<td>0.689 (0.38)</td>
<td>1.99</td>
<td>0.94 to 4.19</td>
<td>0.069</td>
</tr>
<tr>
<td>Last 12 months</td>
<td>0.387 (0.24)</td>
<td>1.47</td>
<td>0.92 to 2.36</td>
<td>0.111</td>
</tr>
<tr>
<td>Last 5 years</td>
<td>0.606 (0.18)</td>
<td>1.50</td>
<td>1.09 to 2.14</td>
<td>0.023</td>
</tr>
</tbody>
</table>

*1=yes; 2=no.

Table IV shows the results of logistic regression analysis applied to anamnestic factors and drug use (San Marino Study, 1990–1, n=2237). The table indicates the relationship between various factors and the presence of dyspepsia, peptic ulcer, H2 antagonists, antacids, and benzodiazepines. For example, the odds ratio for dyspepsia is 1.63, indicating a significant association with the presence of dyspepsia. The table also shows the association with different periods (last month, last 3 months, last 6 months, last 12 months, and last 5 years) and the use of drugs such as antacids, benzodiazepines, and dental prosthesis.

Discussion

H pylori infection is present throughout the world. The available epidemiological data are based on studies performed on blood donors, on subjects presenting themselves to health centres or on volunteers. This kind of recruitment may introduce bias because the selected people may not be representative of the general population. There is only one published study that is based on a random sample of a large population but this study was retrospectively conducted and the demographic information had been obtained during two previous studies carried out in a single Welsh town. The Eurogast Study Group has recently published data on the variability of prevalence of H pylori infection and associated risk factors among asymptomatic subjects in 17 different populations. There are also the cross sectional studies done in southern China and Saudi Arabia but these studies have not been designed to represent the entire population of the country. The study performed by Al-Moagel et al in Riyadh City is interesting, however, as it shows many similarities with our study: it was conducted recruiting subjects randomly from the records of general practitioners of Primary Health Care Centres (even if there were only 557 subjects, recruited from a single town of a tropical region), it was undertaken to evaluate the prevalence of H pylori in different age groups, and it looked for any relation of seropositivity with socioeconomic status, use of drugs, smoking, and gastrointestinal symptoms in the subject. The distinguishing features of the San Marino H pylori study consist of: (a) a very large sample size with the highest percentage of respondents (77%) reported to date, which can be considered truly representative of all the adult residents in this country; (b) a standard protocol for recruiting and interviewing with a specific questionnaire (focused on gastrointestinal diseases in the subject and their close relatives) for all the subjects in a single
centre of a country where high frequency of gastroduodenal diseases has been reported.

The clinical interest for this kind of population based study is justified by the finding that *H pylori* infection is associated with gastric cancer and it is an independent risk indicator of gastric adenocarcinoma. Therefore, the eventual confirmation of the provocative hypothesis for the role of *H pylori* as relevant cofactor in the pathogenesis of gastric malignancies could modify the clinical approach to the patient with *H pylori* infection.

In our study the analysis of non-responders showed that subjects who did not participate presented a lower prevalence of previous diagnosis of dyspepsia and peptic ulcer. Thus, even if the inferential validity has to be restricted to the types of people who were willing to participate fully in the study, it is worthwhile to note that three quarters of the active population fall in this group. Moreover when we analysed questionnaires for gastrointestinal symptoms we only found epigastric pain in 173 (7.8%) of 2237 responders (data not shown). This result balances the possibility of having introduced a bias for a higher frequency of gastroduodenal diseases in the subjects who participated in the study with respect to non-responders. Therefore peptic ulcer patients are not over-represented in our study population. For diagnosis an ELISA test with a first generation antigen was used as a screen test. The low cut off value used gave a high sensitivity but low specificity. All the positive samples were subsequently tested by immunoblot and 9.8% of the samples were eliminated. This approach, while time consuming, gave us a high degree of sensitivity and specificity.

The San Marino *H pylori* Study shows that over half of the adult population of this country is infected by *H pylori*. This prevalence is higher than in Italy or in other Western European countries. We found that *H pylori* seropositivity increases significantly with age, confirming previous studies.

This pattern has been explained by a cohort effect. The hypothesis for this cohort effect is also supported in our study by the finding that the curve of *H pylori* seropositivity by age tended to parallel that seen for the increase of economic and sanitation conditions in San Marino during the past 50 years.

With regard to demographic and socioeconomic factors, we found that subjects born in southern regions and those who were manual workers (blue collars) tended to have a higher rate of infection. The finding that social workers with a high educational standard have a higher rate of seropositivity (74%) than subjects with a similar socioeconomic status but a different type of job, emphasises the relevance of direct person to person spread of the infection as recently shown in nurses and in cohabiting children. These findings suggest that poor hygiene standards and low socioeconomic status (which frequently reflects the first) are important factors for the acquisition of *H pylori* in the first years of life, confirming previous findings on differences between developed and developing countries and on the importance of overcrowding and close person to person contacts in childhood.

Concerning the use of drugs, in the multivariate analysis the prevalence of infection remained associated significantly with previous treatment with *H2* antagonists (excess of risk: 94%) and benzodiazepines (excess of risk: 56%). The association with *H2* antagonists is in agreement with the results reported in a recent case control study on the risk for gastric adenocarcinoma. These data could be interpreted either as indirect evidence for an underlying asymptomatic peptic ulcer disease in the *H pylori* positive subject or as a result of symptomatic treatment with *H2* antagonists of the ulcer like symptoms induced by the *H pylori* associated gastritis. In fact patients presenting with peptic ulcer and non-ulcer dyspepsia have high prevalence rates of *H pylori* infection, and often show anxious personality patterns, therefore they are also frequently treated with sedatives for their dyspeptic symptoms.

H pylori infection was significantly higher in subjects who reported gastrointestinal endoscopy in the past five years. This finding can be explained either with a possible *H pylori* transmission by endoscopic instruments as previously shown or with an indirect effect of long standing dyspeptic symptoms in *H pylori* positive subjects, which induced them to have endoscopy. Earlier studies reported the presence of *H pylori* in dental plaque; this finding induced us to look for an association of the infection in subjects who had had dental treatment or permanent dental prostheses. Multivariate analysis showed that *H pylori* seropositivity was directly associated with the presence of dental prostheses, while those who had regular dental treatment (and therefore have probably eliminated or reduced their dental plaque) showed the lower rates of *H pylori* infection (Tables IV and V).

Therefore, having permanent dental prostheses could infer a higher risk of infection for the subject, by possible continuous ingestion of *H pylori*. The logistic regression analysis also confirmed the relevance of *H pylori* infection in the natural history of gastroduodenal diseases. In fact significant associations with seropositivity were found not only for peptic ulcer in the subjects of the study (excess of risk: 63%), but also in their close relatives as regards peptic ulcer in siblings (excess of risk: 52%) and
gastric cancer in the father (excess of risk: 50%). In contrast, *H pylori* seropositivity was not significantly associated with gastrointestinal diseases in partners.

In the San Marino *H pylori* study the lack of association of seropositivity with history of dyspepsia in the subject and the inverse association seen in subjects whose fathers had dyspepsia confirm the data of previous serological studies32-48 but are apparently in contrast with histological studies that show *H pylori* infection in over half of the patients with non-ulcer dyspepsia. It is necessary to emphasise, however, that in our study the diagnosis of dyspepsia in the subjects, as well as in the close relatives, was not based on endoscopic or histological findings as were those of peptic ulcer or gastric cancer. Given that the concordance of clinical diagnosis of dyspepsia with histological gastritis can be as low as 30%, it is conceivable that in the San Marino *H pylori* Study we did not find an association of dyspepsia with *H pylori* infection. This could be caused by an overestimation of the presence of *H pylori* gastritis in seronegative subjects.

No conclusions can be made on the direct relations between gastric carcinoma or colon cancer and *H pylori* seropositivity because of the small number of subjects recruited who had these diseases (respectively five and four subjects of 2237 cases in the study). Italy is one of the European countries with the highest death rates for gastric cancer49 (males: 27×100000 inhabitants in 1980–3), which accounts for over 14000 deaths per year in 1987 (10% of all the cancer deaths).50 Furthermore in Italy there is a wide geographical variability for gastric cancer mortality51 and high risk areas are located in central northern regions. One of these regions, Emilia-Romagna, showed a crude death rate for men of 48×100000 inhabitants in 1980–3, with noticeable prevalence for men in its south eastern area20 (Fig 1). The same trend was confirmed in the following years with a death rate of 43×100000/year in 1987–9.52 The Republic of San Marino is located in the highest risk area of this region, and in this small independent country a gastric cancer death rate of 68×100000 inhabitants in 1987–90 has been reported.21 Moreover, previous studies in San Marinese families with gastric carcinoma have shown a higher frequency of this disease in first degree relatives of the affected families.15 The results of our San Marino *H pylori* Study shows that during 1985–93 the highest gastric cancer incidence was generally seen in the districts with higher seropositivity rates, even if a significant linear correlation could be shown only in seven of nine districts (Table II). This trend is in agreement with the results obtained in a recent multicentric international study,16 however, which showed a significant relation between *H pylori* seropositivity and cumulative rates for both gastric cancer incidence and mortality.

In conclusion we performed for the first time a cross sectional serological population based study of *H pylori* infection in a complete European Mediterranean country, the Republic of San Marino. *H pylori* infection increases significantly with age, is associated with a Southern place of birth, and manual work and it is more widespread in those districts of San Marino with higher gastric cancer incidence. *H pylori* seropositivity was associated with anamnestic factors such as peptic ulcer, use of H2 antagonists and benzodiazepines, presence of permanent dental prostheses, gastrointestinal endoscopy in the past five years, and a positive history of peptic ulcer in siblings. We also found that subjects with a *H pylori* seropositivity rate reported a high frequency of gastric cancer in their father. Because there are no prevalence rates of peptic ulcer, atrrophic gastritis, and gastric cancer in San Marino are higher in comparison with those seen in the Italian population,53 prospective endoscopic and histopathological investigations in these San Marinese subjects could confirm a possible role of *H pylori* infection, together with genetic,18 environmental,19 and dietary factors54 in the pathogenesis of these diseases.

This study was supported by I Patologia Medica and Institute of Hygiene, University of Bologna, Italy, Istituto di Scienze Social and Ministry of Health and Social Security, Republic of San Marino, and in part by Associazione Ricerca in Medicina, Bologna, Italy. We are indebted to Professor Roger Feldman and to Nicholas Banatvala, MD (Department of Epidemiology, London Medical College), for their advice and discussion on the evaluation of data; to Mario Baraldini, MD (I Patologia Medica) for his suggestions for the study, to Ing Pierpaolo Maris (CIS, San Marino Hospital), for providing demographic information on the population of San Marino; to Marta Lorenzana Stefanelli, MD, and to Giovanni Calò, MD (Endoscopy Unit, San Marino Hospital), for kindly providing data on gastric cancer in San Marino; to Emanuela Rattini, MD, for performing some of the medical interviews; to Professor Paolo Rolli (Director, Department of Primary Care, San Marino Hospital), Marta Rosaria Bigotto, MD (former General Manager, San Marino Hospital), and Ferruccio Casali, MD (Director, Laboratory Analysis, San Marino Hospital), for providing facilities to perform medical interviews and serum sample collections; to Lorenzo Baldini, MD, Donatina Cilla, MD, Elena Bassococi, MD, Sergio Baldinelli, MD, Giuseppe Capriati, MD, Paolina Pasini, BS, and Gianfranco Epifanio (I Patologia Medica, University of Bologna), for their technical assistance and laboratory work.

11 Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Gill BJ, Blaser MJ. Helicobacter pylori infection and

A population based study of Helicobacter pylori infection in a European country: the San Marino Study. Relations with gastrointestinal diseases.

G Gasbarrini, S Pretolani, F Bonvicini, M R Gatto, E Tonelli, F Mégraud, K Mayo, G Ghironzi, G Giulianelli and M Grassi

Gut 1995 36: 838-844
doi: 10.1136/gut.36.6.838

Updated information and services can be found at:
http://gut.bmj.com/content/36/6/838

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Pancreatic cancer (660)
- Endoscopy (1003)
- Ulcer (484)
- Drugs: gastrointestinal system (207)
- Campylobacter, Salmonella, Shigella, Escherichia coli (242)
- Dyspepsia (297)
- Helicobacter pylori (218)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/