Increased CA 125 in tuberculous peritonitis

EDITOR,—O’Riordan et al reported the case of a patient with tuberculous peritonitis, ascites, and pleural effusion who also had a remarkably increased concentration of serum CA 125 (Gut 1995; 36: 303–5). Because of the increase in this tumour marker an ovarian cancer was suspected and a laparotomy was performed with negative results for cancer. The authors consider the increased values of CA 125 the most interesting aspect of the case, and review other published reports on increased CA 125 values in patients with tuberculous ascites.

I believe, however, that the only interesting and noticeable aspect of the case would have been if the patient had had a normal value of CA 125. This tumour marker, commonly used in the diagnosis of epithelioid ovarian cancer, increases in a variety of processes including pleura, pericardium, and peritoneum including endometriosis, peritonitis, pelvic inflammatory disease, and surgical trauma.1 Thus the increase in CA 125 is not unexpected because this antigen has been detected on mesothelial cells in pleura, pericardium, and peritoneum, particularly in areas of inflammation.2

Benign conditions such as effusions, particularly ascites, are associated with increased serum concentrations of CA 125 with values up to 100 times the upper normal limit in some cases.3,4 CA 125 has proved to be an excellent marker for malignant liver diseases (sensitivity 98-4%, specificity 95-9%, efficiency 96-9%).5 This marker is also very sensitive to minimal amounts of ascites and correlates very well with the amount of ascitic fluid.6 Thus the specificity of CA 125 for ovarian cancer is very low in the presence of ascites of whatever origin.

In addition, the return of CA 125 to normal after anti-tuberculous treatment in the patient of O’Riordan et al is not unexpected. CA 125 decreases to normal values when the ascites is removed in cirrhotic patients and increases again when ascites recur.7

The authors conclude that tuberculous ascites needs to be considered in the differential diagnosis of ascites with increased tumour markers’. It is well known, however, that CA 125 is an unspecific marker of ascites of whatever aetiology. Tuberculous ascites, a disease that only uncommonly produces peritoneal effusions, represents only one of the many aetiologies of ascites. Finally, I believe that a laparotomy should not have been performed in this case because both computed tomography and cytological study of ascitic fluid were negative for ovarian cancer and the very high concentration of CA 125 could have been easily explained by the existence of both ascites and pleural fluid.
adenomas, but by an accelerated evolution of the adenoma–carcinoma sequence.1,2 Can the conflicting data be reconciled? The central issue is the identification of genes in HNPCC families. A high proportion of our findings are based on a small number of very large families, one of which is known to harbour a point mutation in hMSH2.3 Conversely, a high proportion of tumours originating from smaller families is now turning out to be negative for the mutator phenotype (lacking in DNA replication errors). Thus, different genetic factors must be operating in these families, if any. It is clear that HNPCC mutations may be successfully transmitted through multiple generations.4 Geographic regions showing a relative high frequency of HNPCC families have turned out to harbour a single, highly extended family.4 The frequency of HNPCC in other regions of the same country may be considerably lower. It would therefore appear that the frequency of HNPCC may be lower than 5% and that the most typical presentation of the syndrome may be within rare but relatively large, extended families. Authentic descriptions of the pathological spectrum within HNPCC must be based either on very large families or on families known to carry an HNPCC gene mutation. Conversely, the main practical and logistic problems posed by familial colorectal cancer may lie outside classic HNPCC.

J R JASS
School of Medicine University of Auckland, Private Bag 92 019 Auckland, New Zealand

tion of ancestral founder haplotype in heredi-

Reply

EDITOR,—Professor Jass comments that our finding of an increased frequency of adenomas, particularly in the proximal colon in 127 subjects from 69 HNPCC families compared with subjects with less of a family history, is somewhat at variance with the conclusions reported in his study of ‘low risk’ subjects from 29 HNPCC families.1 His study showed no significant increase in the frequency of adenomas in subjects from HNPCC families compared with a necropsy population. His findings are at variance, however, with another publication of the results of colonoscopy examination of 161 first degree relatives of affected members from 28 HNPCC families,2 in which the subjects reported an increased incidence of adenomas similar to what we observed. The increased prevalence of adenomas persisted in all ages. We did not have a control group of subjects with general population risk and it could be argued that our reference group of non-HNPCC subjects may have had an increased risk of adenomas compared with the rest of the pop-

ulation. This would tend to underestimate the increased prevalence of adenomas in our HNPCC group. In our study, however, the colonoscopy findings were performed by the same operator and at least by the same tech-
nique. We cannot be sure in their study that they are comparing like with like—that is, in comparing findings at colonoscopy with those at postmortem examination.

We disagree with Jass that any apparent differences in findings can be reconciled by consideration of family size. All of our HNPCC families were defined by the Amsterdam criteria, as were most of those in Jass’s report. These are very strict criteria and highly specific for this diagnosis. Thus our description of the pathological spectrum in subjects from relatively smaller families that fulfil the Amsterdam criteria is likely to be as accurate as that obtained from the Jass series. Indeed, to understand the true spectrum of this disease, information from members of large numbers of families in addition to large sized families is required.

We agree with Professor Jass that the jury is still out regarding the proportion of families with HNPCC among those with familial clustering of colorectal cancer, and that the HNPCC may be uncommon.

S HODGSON
J NORTHOWER
W ATKIN
ICRF Colorectal Unit, St Mark’s Hospital, City Road, London EC1V 2PS

Cholecystokinin and transient lower oesophageal sphincter relaxation

EDITOR,—The paper by Ledebor et al (Gut 1995; 36: 303–7) clearly shows that CCK infusion does not affect the occurrence of transient lower oesophageal sphincter relaxations (TLOSR) in humans. In contrast, we have recently shown that in dogs CCK infusion dramatically increases the frequency of TLOSR.1 A hasty conclusion would be that the dog is not an adequate model. There are arguments, however, suggesting that the difference between the two results is caused by the use of different forms of CCK: CCK-33 in the paper of Ledebor et al and CCK-8 in our work. CCK-33 is one of the major molecular forms found in the plasma whereas CCK-8 can be considered as the neuronal form synthesised in the brain and released at nerve endings.2 It can indeed be postulated that CCK-8, but not CCK-33, is able to trigger TLOSR, which are known to depend on the vago-sympathetic pathway.3 Moreover, a comparison between the control of TLOSR and satiety, which also requires vagal afferent fibres integrity,4 shows the difference of the two CCK forms in question. The inhibition of food intake by administration of exogenous CCK-8 is well documented and reported. However, increase of endogenous plasmatic CCK5 or administration of exoge-

uous CCK-33 has been found unable to induce satiety.

In conclusion, despite the absence of effect of CCK-33, a CCKergic control of transient lower oesophageal sphincter relaxations and gastro-oesophageal reflux cannot be excluded.


Discussion

EDITOR,—Aldoori et al (Gut 1995; 36: 276–82) claim to show an inverse relation between physical activity and symptomatic diverticular disease. Their data do not support such a conclusion, and it is unfortunate that such flawed conclusions have been so widely broadcast (the Times, BMJ 1995; 310: 476; Hospital Doctor).

Despite the paper’s title, this was not truly a prospective study, but a population retrospective study in the UK at a prospective study of heart disease and cancer to which diverticular questions were opportunistically appended while the main study was underway. This study’s original hypothesis did not suggest diverticular disease, and the design did not include a ratio-
nale, or a means of systematically detecting diverticular, most of which are asymptomatic.1 Symptomatic diverticular disease is not a meaningful term. Diverticula probably cause systems only when they bleed or perforate causing peritonitis. Do diverticulitis themselves cause symptoms? We think not. When subjects found to have diverticula on barium enema were being considered for removal, many said they were no more likely to have bowel symptoms, and the bowel symptoms were mainly those of the irritable bowel (IBS).2,3 The authors claim that there is no basis for the diagnosis of IBS, yet there are published crite-
ria.3,4 IBS occurs in 10 to 20% of adults.5 Therefore the abdominal pain and changed bowel habit found in the reported patients of Aldoori et al are most probably due to IBS in people who happen to have been found to have diverticular disease.

The authors have not shown that exercise prevents diverticular disease, symptomatic or not. What they might have shown was that exercise prevents functional bowel symptoms, but a better designed study is needed to confirm that. We have certainly seen patients whose...
Adenomas and a family history of colorectal cancer.

J R Jass

Gut 1995 37: 297-298
doi: 10.1136/gut.37.2.297-c

Updated information and services can be found at:
http://gut.bmj.com/content/37/2/297.4.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/