Reflux related symptoms in patients with normal oesophageal exposure to acid

G Shi, S Bruley des Varannes, C Scarpignato, M Le Rhun, J-P Galmiche

Abstract
Several studies, using pH monitoring with event markers, have identified patients with normal oesophageal exposure to acid despite an apparent relation between symptoms and reflux episodes. In this series of 771 consecutive patients referred for 24 hour oesophageal pH monitoring, a probability calculation was used to evaluate the relation between symptoms and reflux episodes. Oesophageal exposure to acid was normal in 462 of 771 recordings (59-9%); despite this, 70-8% (327 of 462) of these patients used at least once the event marker. In 96 patients (12-5% of total patients) with normal oesophageal exposure to acid, there was a statistically significant association between symptoms and reflux episodes. The symptom cluster of such patients was similar to that usually seen in patients with gastro-oesophageal reflux disease, but symptoms like belching, bloating, and nausea were common thus overlapping with the symptom pattern of functional dyspepsia. In these patients both the duration and the minimum pH of reflux episodes (either symptom related or asymptomatic) were significantly shorter and higher, respectively, when compared with those of patients with gastro-oesophageal reflux disease. These results are consistent with the idea that oesophageal hypersensitivity to acid is the underlying pathophysiological feature of this syndrome.

Keywords: pH monitoring, gastro-oesophageal reflux, symptom reflux relations, visceral perception.

Ambulatory oesophageal pH monitoring is currently regarded as the most objective means for detecting and quantifying gastro-oesophageal reflux. It also represents the most sensitive diagnostic investigation for gastro-oesophageal reflux disease. The availability of modern portable data loggers with one or more event markers has permitted a better understanding of the relations between symptoms and reflux episodes occurring during 24 hour oesophageal pH monitoring. When the relation of oesophageal exposure to acid with symptoms is considered, four possibilities exist — that is, abnormal oesophageal exposure to acid with or without temporal relation between symptoms and reflux episodes and normal oesophageal exposure to acid without or with temporal relation between symptoms and reflux episodes.

Patients with both normal oesophageal exposure to acid and apparent temporal relation between symptoms and reflux episodes have been identified in several studies, including ours. Some indices have been proposed to assess the strength of this relation, including symptom specificity index and symptom sensitivity index. Unfortunately, cut off values of these indices have been chosen arbitrarily and often differ from one study to another. In addition, it should be considered that some symptoms may occur simultaneously with reflux episodes only by chance. To overcome these limitations, Ghielmet et al recently proposed the evaluation of the relation between symptoms and reflux episodes by using a probability calculation based on the binomial law. Although not perfect in theory, this method has the advantage of describing that strength of the association without any previous arbitrary choice. In fact, the association can be regarded as significant if the p value is less than the generally accepted value of 5%.

We have recently adopted this method to calculate the probability that symptoms and reflux episodes occur simultaneously only by chance in a large series of consecutive patients referred to our laboratory for 24 hour oesophageal pH monitoring. Among this large number of subjects, we identified a subset of patients characterised by normal oesophageal exposure to acid and a significant association between symptoms and reflux episodes who seem to have an ‘acid hypersensitive oesophagus’. In this study we therefore tried to define the frequency of the acid hypersensitive oesophagus syndrome and its main clinical picture, and to compare — in patients with both normal and abnormal oesophageal exposure to acid — the results obtained with probability calculation with those derived from previously described symptom indices. During these studies, the reproducibility of pH monitoring in the evaluation of symptom reflux relations was also assessed.
Methods

Patients
A total of 771 consecutive patients (392 men and 379 women, age 50.4 (14.8), mean (SD)) were submitted to 24 hour pH monitoring because of symptoms suggestive of gastro-oesophageal reflux disease or non-cardiac chest pain, or both, during the period January 1989–June 1993 (Fig 1). Some patients were studied on several occasions to evaluate the reproducibility of each proposed parameter for assessing the symptom reflux relations.

Endoscopy
Upper digestive endoscopy was performed on an outpatient basis on subjects fasted overnight. A complete examination of the oesophagus, stomach, and duodenum was achieved. Oesophagitis was graded as follows: grade 1 isolated erosions, grade 2 confluent erosions or ulcerations (not circumferential), and grade 3 circumferential lesions. Patients with stricture or Barrett’s oesophagus were not included in the study.

Twenty four hour pH monitoring
Twenty four hour oesophageal pH recording was performed using a combined glass pH electrode (440M4, Ingold, Urdorf, Switzerland) and a digital data logger (Digitrapper MKII, Synectics, Stockholm, Sweden). The system was calibrated at pH 1 and pH 7 before each study. The patients fasted for at least 12 hours and had stopped taking any antireflux treatment (that is, antisecretory or prokinetic drugs, or both), which can interfere with the results. The probe was passed through the nose and positioned 5 cm above the upper border of the gastro-oesophageal junction, which was determined either by previous manometry or by the pH step up method.1 During early studies, pH monitoring was performed in the hospital setting under standardised conditions. More recently (the last 82 cases), studies were performed on an outpatient basis in fully ambulatory conditions—that is, without any dietary restriction except for food and beverages with a pH <5. Periods of eating, drinking, and supine position were specified by patients on a diary card. At the start of the recording, patients were carefully instructed to press the event marker button if they had a symptom. This recommendation was also emphasised on the diary card.

After the 24 hour pH monitoring, the data were downloaded from the digital data logger to an IBM computer and the recorded data were analysed by using a dedicated software (EsopHogram 5.5) written by Gastrosoft (Dallas, USA). Apart from the usual reflux parameters (% time below pH 4 and characteristics of reflux episodes), three indices were calculated to measure the strength of the relation between symptoms and reflux episodes: the probability that symptoms and reflux episodes occurred simultaneously by chance,14 the symptom specificity index,10 12 and the symptom sensitivity index.13 For the evaluation of the temporal relation between symptoms and reflux episodes, pH tracings were reviewed and a symptom and a reflux episode were considered causally related if a symptom occurred during the reflux episode itself or within two minutes after it finished.

The probability (p) that symptoms and reflux episodes occurred by chance was obtained by summing a number of partial probabilities, each of which was obtained by using the binomial formula, described later14:

\[P = \frac{n!}{(n-r)!} \left(1-p\right)^{n-r} \]

where \(n \) is the total number of symptom episodes signalled by the patient; \(r \) ranges from the actual number of symptom episodes that occur during or within two minutes of the end of a fall in pH below 4 to \(n \); \(p \) is the probability that one symptom episode occurs during or within two minutes of the end of a fall in pH below 4 only by chance and is calculated from the formula:

\[P = \frac{\text{total time (min) pH below 4}}{\text{total time (min) recording}} \times \text{number of pH drops below 4} \]

The symptom specificity index, which determines the percentage of reflux related symptom episodes, was calculated as described by Wiener et al10 whereas the symptom sensitivity index, which calculates the percentage of symptom related reflux episodes was quantified according to Breumelhof and Smout.13

Statistical evaluation of data
The pH data are presented as median values with interquartile ranges. Student’s t test was used to compare the mean duration and minimal pH between the symptom related reflux episodes and the asymptomatic reflux episodes.
Acid hypersensitive oesophagus

TABLE 1 Clinical characteristics of 96 patients with normal oesophageal exposure to acid and statistically significant association between symptoms and reflux episodes during 24 hour pH monitoring

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Frequency (% of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartburn</td>
<td>90.8</td>
</tr>
<tr>
<td>Regurgitation</td>
<td>87.2</td>
</tr>
<tr>
<td>Epigastric burning</td>
<td>79.2</td>
</tr>
<tr>
<td>Epigastric pain</td>
<td>74.2</td>
</tr>
<tr>
<td>Belching</td>
<td>67.2</td>
</tr>
<tr>
<td>Nausea or vomiting</td>
<td>64.2</td>
</tr>
<tr>
<td>Early satiety</td>
<td>61.2</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>58.2</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>55.2</td>
</tr>
<tr>
<td>Respiratory symptoms</td>
<td>52.2</td>
</tr>
<tr>
<td>ENT symptoms</td>
<td>49.2</td>
</tr>
</tbody>
</table>

NCCP=non-cardiac chest pain; ENT=ear, nose, and throat.

The frequency of the acid hypersensitive oesophagus syndrome was slightly but significantly higher when pH monitoring was performed in an outpatient basis (20.7% v 10.9%, p<0.01). Table I summarises the clinical characteristics of these patients. Seventy four of these patients also had upper gastrointestinal endoscopy within one month prior to pH monitoring.

The sex ratio (male/female) was not statistically different from that of the whole patient population (45 and 51 v 392 and 379, NS) and to that seen in patients with normal oesophageal exposure to acid (45 and 51 v 209 and 253, NS). Age of patients ranged from 18 to 73 years with mean value of 48.8 years, a figure virtually identical to that seen in the whole patient population (48.8 (14.3) v 50.4 (14.8) years, NS) and to that seen in patients with normal oesophageal exposure to acid (48.8 (14.3) v 50.8 (14.9), NS).

Figure 2 shows the frequency of the different symptoms experienced by these 96 patients. With regard to typical symptoms of reflux, heartburn, regurgitation, and epigastric burning were reported by 76%, 57%, and 50% of patients, respectively. Many patients also complained of belching (68%), or dyspeptic symptoms (for example, bloating, nausea, vomiting, early satiety, loss of appetite), or both (Fig 2). Otherwise, non-cardiac chest pain, ear, nose, and throat symptoms, and respiratory symptoms were seen in 27.8%, 47.8%, and 33.3% patients, respectively. The predominant symptoms (that is, the symptoms leading the patients to seek medical care) were digestive symptoms (74.4%), respiratory symptoms (14.0%), ear, nose, and throat symptoms (6.9%), or non-cardiac chest pain (4.7%). The duration of symptoms ranged from 0.5 month to 17 years (median: 24 months). In those patients in whom endoscopy was performed, it mostly showed a normal oesophageal mucosa and a mild oesophagitis in most of the other patients (Table I).

Frequency of symptom episodes, reflux episodes, and reflux related symptom episodes

In the 96 patients, 1161 symptom episodes and 3306 reflux episodes were registered during the 24 hour pH monitoring. Five hundred and three of 1161 symptom episodes (43.3%) were reflux related as previously defined. Forty three patients (44.8%) had more than four reflux related symptom episodes. Table II shows the results of pH monitoring in the 96 patients.

Probability, symptom specificity index, and symptom sensitivity index

Figure 3 shows the distributions of probability (log), symptom specificity index, and symptom sensitivity index in patients with acid hypersensitive oesophageal syndrome. The probability was <0.01 in 71 patients and <0.001 in 41 patients (Fig 3A). Nine patients had a symptom specificity index lower than 25%, 48 patients equal or greater than 50%,
and 23 patients equal or greater than 75% (Fig 3B). The symptom sensitivity index was ≥10% in 70 patients and ≥20% in 38 patients (Fig 3C). When symptom specificity index and symptom sensitivity index were considered together, it was found that 33 (34.4%) patients had a symptom specificity index ≥50% with a symptom sensitivity index ≥10%. No patient had a symptom specificity index <25% and a symptom sensitivity index <10%.

There was a poor albeit significant (p<0.05) correlation between probability (-log) and symptom specificity index in both patients with acid hypersensitive oesophagus syndrome and with gastro-oesophageal reflux disease (Fig 4A and Fig 5A). In contrast, a strong and significant (p<0.0001) correlation was seen between probability (-log) and symptom sensitivity index (Fig 4B and Fig 5B). As expected, symptom specificity index and symptom sensitivity index were inversely related to each other (Fig 4C), but the correlation in patients with gastro-oesophageal reflux disease (Fig 5C) fell short of statistical significance.

Characteristics of reflux episodes
Table III shows mean duration and minimum pH of symptom related reflux episodes and asymptomatic reflux episodes in patients with acid hypersensitive oesophagus syndrome and those with gastro-oesophageal reflux disease. Symptom related reflux episodes had significantly longer duration (p<0.001) than the asymptomatic ones in total time and upright position, but not in supine position (p>0.05). Similarly, the minimum pH of symptom related reflux episodes was lower than that of asymptomatic ones in total time and upright position (p<0.001), but not in supine position (p>0.05). When the characteristics of symptom related (as well as asymptomatic) reflux episodes of patients with acid hypersensitive oesophagus syndrome were compared with those of patients with true gastro-oesophageal reflux disease, both the duration and minimum pH of the first group were significantly shorter and higher than those of the second, respectively.

Reproducibility of pH monitoring in the assessment of symptom reflux relations
During the study period, 13 of 96 patients were studied on at least two occasions by 24 hour pH monitoring. The median interval between the two pH recordings was 12 months (range 1-47 months). Despite this sometimes long interval between assessments, these patients always experienced nearly the same symptoms and used at least once the event marker during each of the 26 pH monitoring. In six of these 13 patients, the diagnosis of acid hypersensitive oesophagus syndrome – that is, patients with normal oesophageal exposure to acid and symptom related reflux episodes – was consistently made. In seven other patients, only one recording showed the pattern of acid hypersensitive oesophagus syndrome (Table IV). Nine patients had normal oesophageal exposure to acid during the two pH recordings. Ten patients had a significant relation between symptoms and reflux episodes on both recordings but four of them had a discrepancy for oesophageal acid exposure between the two pH recordings (Table IV). Oesophageal exposure to acid never exceeded 6.7% of the total time, however, and, albeit abnormal, it always remained very close to the upper limit of normality (4.2%).

Discussion

Although traditional pH metric variables (total reflux time, the total number of refluxes, and the number of refluxes longer than five
Acid hypersensitive oesophagus

minutes) still remain useful parameters to discriminate between patients with gastrooesophageal reflux disease and asymptomatic healthy subjects, they do not help in establishing any responsibility for acid reflux in the patient’s complaints. The use of the event marker(s) or diary card, or both, is mandatory to show a temporal relation between symptoms and reflux episodes. However, not only could symptoms be unrelated to reflux episodes in the presence of abnormal oesophageal exposure to acid, but also, conversely, a symptomatology that apparently reflux related can be seen in patients whose oesophageal exposure to acid is normal. Although several studies have been able to identify patients with normal oesophageal exposure to acid and acid related symptoms, the exact frequency of this acid hypersensitive oesophagus syndrome and its symptom pattern have not been established, as yet.

While analysing symptom reflux relations, two important limitations should be taken into account. Firstly, according to our own experience only half of the patients used the event marker and in only 50% of the cases are symptoms perceived by the patients reflux related. Performing 24 hour pH monitoring outside the hospital setting could improve the diagnostic yield of the technique as shown in this study. Secondly, there is no uniform agreement on how to measure the strength of association between symptoms and reflux episodes. Indeed, although some indices are currently used, different cut off values are used by different groups of investigators. As symptoms may occur simultaneously with reflux episodes only by chance, a more scientifically sound approach could be the one recently described by Ghillebert et al., which is based on probability calculation. In our investigation we have therefore adopted this approach to

Figure 4: Correlations between probability (-log) and symptom specificity index (%), probability (-log) and symptom sensitivity index (%), and symptom sensitivity index and symptom specificity index in 96 patients with normal oesophageal exposure to acid and statistically significant association between symptoms and reflux episodes during 24 hour pH monitoring.

Figure 5: Correlations between probability (-log) and symptom specificity index (%), probability (-log) and symptom sensitivity index (%), and symptom specificity index and symptom sensitivity index in 92 patients with abnormal oesophageal exposure to acid and statistically significant association between symptoms and reflux episodes during 24 hour pH monitoring (that is, with gastro-oesophageal reflux disease).
identify — among a large series of unselected patients — those with normal oesophageal exposure to acid and a statistically significant association between symptoms and reflux episodes. We also used symptom time window, which was recently demonstrated to be optimal for symptom analysis in 24 hour oesophageal pH and pressure monitoring. Ninety six of 771 patients studied were found to have reflux related symptoms despite a normal oesophageal exposure to acid. They represent the 12.5% of the general patient population and the 20.8% (96 of 462) of those whose oesophageal exposure to acid fell within the normal range.

Frequency of the acid hypersensitive oesophagus syndrome should, however, be considered in the light of methodology to assess symptom reflux relations and of the reproducibility of the technique. An additional aim of our study was therefore to compare results obtained with the probability calculation, considered as the gold standard, with those derived from previously described reflux indices. By using a cut off value of 50%, 91216 only half patients would have been classified as having an acid hypersensitive oesophagus syndrome on the basis of symptom specificity index while, by using the symptom sensitivity index and a cut off value of 10%, 1370 of 96 patients would have been included in this group. As a consequence, symptom sensitivity index correlated with the probability value (-log p) in a better way than symptom specificity index.

Although several studies (for review see reference 1) have shown 24 hour pH monitoring to be a reproducible technique to discriminate between patients with normal and abnormal reflux, no one has investigated its reproducibility in patients with normal oesophageal exposure to acid and reflux related symptoms. In this study, we assessed for the first time the reproducibility of pH monitoring in the evaluation of symptom reflux relations and found a concordance (reflux related/reflux unrelated) of 77% between two consecutive recordings. The concordance (normal/abnormal) for oesophageal exposure to acid in the same patient group was not significantly different (69%). Therefore the ‘true’ frequency of the acid hypersensitive oesophagus syndrome is probably lower than the previously reported estimate. Indeed, some patients (about one third) may be classified as gastro-oesophageal reflux disease because of the failure of the first pH recording to detect a borderline, albeit, abnormal oesophageal exposure to acid. Moreover reproducibility of pH monitoring in the diagnosis of gastro-oesophageal reflux disease was shown to be low in patients with borderline values of oesophageal exposure to acid. 17

Despite the fairly long interval between the two pH monitorings, the diagnosis of acid hypersensitive oesophagus syndrome can be consistently made in about half of the patients, because of the reproducibility of both oesophageal exposure to acid and symptom reflux assessment.

TABLE III

<table>
<thead>
<tr>
<th>Symptom related reflux episodes</th>
<th></th>
<th>Asymptomatic reflux episodes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with AHO (n=504)</td>
<td>Patients with GORD (n=783)</td>
<td>Patients with AHO (n=2502)</td>
<td>Patients with GORD (n=4721)</td>
</tr>
<tr>
<td>Duration (min)</td>
<td>p</td>
<td>Value</td>
<td>p</td>
</tr>
<tr>
<td>Total</td>
<td>1-28 (0.08)</td>
<td>3-44 (0.23)</td>
<td>0-88 (0.03)</td>
</tr>
<tr>
<td>Upright</td>
<td>1-24 (0.08)</td>
<td>3-26 (0.22)</td>
<td>0-79 (0.03)</td>
</tr>
<tr>
<td>Supine</td>
<td>1-76 (0.38)</td>
<td>5-80 (1-13)</td>
<td>1-43 (0.15)</td>
</tr>
<tr>
<td>Minimum pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2-76 (0.03)</td>
<td>3-32 (0.03)</td>
<td>2-89 (0.02)</td>
</tr>
<tr>
<td>Upright</td>
<td>2-77 (0.04)</td>
<td>3-33 (0.03)</td>
<td>2-93 (0.02)</td>
</tr>
<tr>
<td>Supine</td>
<td>2-85 (0.14)</td>
<td>2-12 (0.10)</td>
<td>2-64 (0.04)</td>
</tr>
</tbody>
</table>

NS = not significant; *Student’s t test.

RESULTS

Results of 24 hour pH monitoring in 13 patients having two separate recordings, at least one of them with normal oesophageal exposure to acid and statistically significant association between symptoms and reflux episodes

<table>
<thead>
<tr>
<th>Interval (months)</th>
<th>pH recording</th>
<th>OEA (%)</th>
<th>p<0.05</th>
<th>SSpI</th>
<th>SSeI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>Second</td>
<td></td>
<td>First</td>
<td>Second</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 In In</td>
<td>2.0</td>
<td>3.2</td>
<td>Yes</td>
<td>Yes</td>
<td>45.0</td>
</tr>
<tr>
<td>13 In Out</td>
<td>1.2</td>
<td>1.7</td>
<td>Yes</td>
<td>Yes</td>
<td>30.8</td>
</tr>
<tr>
<td>1 In In</td>
<td>3.7</td>
<td>6.2</td>
<td>Yes</td>
<td>Yes</td>
<td>71.9</td>
</tr>
<tr>
<td>15 Out In</td>
<td>1.6</td>
<td>0.9</td>
<td>Yes</td>
<td>No</td>
<td>57.0</td>
</tr>
<tr>
<td>12 In In</td>
<td>1.9</td>
<td>1.2</td>
<td>Yes</td>
<td>No</td>
<td>35.7</td>
</tr>
<tr>
<td>9 In In</td>
<td>4.1</td>
<td>4.6</td>
<td>Yes</td>
<td>Yes</td>
<td>41.2</td>
</tr>
<tr>
<td>12 In In</td>
<td>1.4</td>
<td>2.8</td>
<td>Yes</td>
<td>No</td>
<td>14.3</td>
</tr>
<tr>
<td>10 In In</td>
<td>2.3</td>
<td>5.8</td>
<td>Yes</td>
<td>Yes</td>
<td>75.0</td>
</tr>
<tr>
<td>3 In Out</td>
<td>1.5</td>
<td>6.7</td>
<td>Yes</td>
<td>Yes</td>
<td>100.0</td>
</tr>
<tr>
<td>24 In In</td>
<td>2.5</td>
<td>4.7</td>
<td>Yes</td>
<td>Yes</td>
<td>40.0</td>
</tr>
<tr>
<td>12 In In</td>
<td>2.4</td>
<td>1.2</td>
<td>Yes</td>
<td>Yes</td>
<td>46.2</td>
</tr>
<tr>
<td>5 Out In</td>
<td>2.7</td>
<td>4.1</td>
<td>Yes</td>
<td>Yes</td>
<td>66.7</td>
</tr>
<tr>
<td>7 In Out</td>
<td>0.6</td>
<td>1.6</td>
<td>Yes</td>
<td>Yes</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Coefficient of variation (%): 42.1

Concordance (%): 69.2

In = inpatient; Out = outpatient; OEA = oesophageal exposure to acid; p=the probability that the association between symptoms and reflux episodes occur by chance; SSpI = symptom specificity index; SSeI = symptom sensitivity index; first = first 24 hour pH monitoring; second = second 24 hour pH monitoring.
Acid hypersensitive oesophagus

The symptom cluster of patients with acid hypersensitive oesophagus syndrome is similar to that usually seen in patients with gastro-oesophageal reflux disease, but symptoms like belching, bloating, and nausea are common thus overlapping with the symptom pattern of functional dyspepsia. As most patients with reflux related symptoms but with normal oesophageal exposure to acid had a normal oesophageal mucosa at endoscopy (and the remaining only a mild oesophagitis), they should represent the patients with true reflux like dyspepsia. What indeed has been classified as reflux like dyspepsia is actually gastro-oesophageal reflux disease, which encompasses reflux oesophagitis, that is gastro-oesophageal reflux with unequivocal changes within the oesophagus and non-erosive gastro-oesophageal reflux disease – that is, symptomatic reflux proved by objective means, without changes being demonstrated.

The exact mechanisms by which reflux causes oesophageal symptoms are still poorly understood and it is unknown whether symptoms arise directly through activation of chemoreceptors or, indirectly, as a result of motility disturbances or mechanical distension of the oesophagus secondary to reflux. It is now well established, however, that, in patients with gastro-oesophageal reflux disease, about 80% of reflux episodes are symptom free, regardless of the severity of oesophageal lesions. Why some reflux episodes are perceived by the patient and some others are not is also unknown. In agreement with Baldi et al. and Smith et al who studied small series of patients with reflux oesophagitis, we found that symptom related reflux episodes lasted longer than those not perceived by the patient. In addition, both the duration and the minimum pH of reflux episodes (either symptom related or asymptomatic) were significantly shorter and higher, respectively, in patients with acid hypersensitive oesophagus syndrome when compared with those of patients with ‘classic’ gastro-oesophageal reflux disease. These data clearly suggest the presence of ‘hypersensitivity’ to acid in the first group of patients.

Results of our investigation are consistent with the idea that acid contact time is one important contributing factor to oesophageal sensitivity. The pH of refluxate also seems to be a critical factor in the perception process. Indeed, we were able to show that when reflux episodes were perceived, pH dropped to a value that was significantly (p<0.001) lower than that seen with asymptomatic reflux episodes. And this is true for both acid hypersensitive oesophagus and gastro-oesophageal reflux disease patients. Why the comparatively short lasting (1-28 (0-8) min) and less acidic reflux episodes occurring in the subset of patients with normal oesophageal exposure to acid are perceived still remains unclear. Factors other than acidity can result in an increased pain perception, including volume of the refluxate and non-acidic components. Whether an increased sensitivity to mechanical stimuli is an additional pathophysiological feature of these patients, as described by Janssens and Vantrappen in non-cardiac chest pain patients with the so called ‘irritable oesophageal syndrome,’ is presently unknown.

If the assumption is accepted that, despite lack of mucosal injury, patients with acid hypersensitive oesophagus syndrome have an increased oesophageal perception as underlying cause, therapeutic effort should be directed to reduce such increased sensitivity. Unfortunately, available drugs (namely 5-HT₃ antagonists and opioids), capable of reducing visceral perception in the lower gastrointestinal tract, seem to be effective in the upper gastrointestinal tract. Therefore, reduction of the stimulus intensity remains at present the only alternative in clinical practice. Provided that the acid is the major stimulus, antisecretory compounds should be the drugs of choice. The reported finding of a reduction of oesophageal sensitivity by famotidine in gastro-oesophageal reflux disease patients suggests that H₂ blockers, besides reducing acid secretion, might interfere with the neural pathways involved in chemo-receptive perception and give a further rationale for the use of this class of drugs in such a subset of patients.

We are grateful to M F Courjal and B Beignet for their expert technical assistance. This work was partially supported by a grant from the Centre Hospitalier Universitaire de Nantes. Preliminary data of the present investigation have been presented at the American Gastroenterological Association (San Francisco) and appeared in abstract form (Gastroenterology 1992; 102: A45).

Reflux related symptoms in patients with normal oesophageal exposure to acid.

G Shi, S Bruley des Varannes, C Scarpignato, M Le Rhun and J P Galmiche

doi: 10.1136/gut.37.4.457

Updated information and services can be found at:
http://gut.bmj.com/content/37/4/457

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Dyspepsia (297)
- Gastro-oesophageal reflux (351)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/