Quantitative assessment of overall inflammatory bowel disease activity using labelled leucocytes: a direct comparison between indium-111 and technetium-99m HMPAO methods

J C Mansfield, M H Giaffer, W B Tindale, C D Holdsworth

Abstract
The ideal imaging method in inflammatory bowel disease would reliably detect inflammation, identify the correct intestinal location, and assess the severity of the disease. The aim of this study was to compare scintigraphic methods of quantifying overall disease activity using both indium-111 (111In) and technetium-99m (99mTc) HMPAO labelled leucocyte scans. The four day faecal excretion of 111In was measured after 111In scintigraphy in 24 patients known to have inflammatory bowel disease. The same patients also underwent 99mTc HMPAO scanning. The scans were performed 10 days or less apart with no changes in treatment between scans. Bowel activity on the 99mTc HMPAO scans was assessed using a computer based method (scan score) and a visual grading method in a further 54 99mTc HMPAO. The results showed a close correlation between inflammatory activity defined by faecal 111In excretion and the scan score generated from the computer analysis of the 99mTc HMPAO image (Spearman rank correlation: r_s = 0.78; p < 0.001). Accurate information to localise inflammatory activity could be obtained by simple visual assessment of both types of scan images, although image quality was superior with 99mTc HMPAO. Qualification of disease activity from 99mTc HMPAO images by visual grading was associated with a large variability, only 69% of scans had similar scores when graded by three observers. Computer generated image analysis was more reproducible. In conclusion, in inflammatory bowel disease 99mTc HMPAO scintigraphy and faecal 111In excretion correlated well. Either method can quantify and localise the inflammation. As 99mTc HMPAO scanning provides a quicker result, with a lower radiation dose, and avoids faecal collection, it may be the preferred method.

(Gut 1995; 37: 679–683)

Keywords: inflammatory bowel disease, 99mTc technetium HMPAO, 111Indium, disease activity.

Introduction
Both 111In tropolionate labelled leucocytes and 99mTc HMPAO labelled leucocytes have been successfully used to localise inflammatory bowel disease activity.1–5 Attempts to quantify the scan image into an index of overall disease activity, which could be used to monitor response to treatment, have been less successful. Clinical disease activity correlated well with a simple grading of the overall scan (zero to four) but this was not sufficiently subtle to define changes before and after treatment. In the case of 111In scans the solution has been to measure the percentage of injected 111In excreted into the faeces over the following four days. This correlates well with other markers of disease activity and clinical indices.6 To quantify 99mTc HMPAO scans the bowel has been divided into regions, each region scored relative to isotope uptake in bone marrow, liver, and spleen and a score calculated by summation of the individual bowel regions. While segment by segment analysis has shown good correlations with endoscopic and histological grading of inflammatory activity,7 the overall scan activity index is less reliable than the scan’s ability to localise inflammation,8 and suffers from interobserver variation.9 Computer assisted subtraction analysis has also been used to generate a scan score from 99mTc HMPAO scans.10 This aims to achieve reliable quantification of overall disease activity, similar to the faecal 111In excretion, and the speed and convenience of 99mTc HMPAO scintigraphy. Scans generated by this method correlate well with clinical disease activity and laboratory indices of active inflammation and have permitted patients with symptoms not caused by active inflammation to be identified.11

This study was designed to compare 111In and 99mTc HMPAO scanning directly in the same patients, with particular attention to the methods of quantification. The objective was to determine the optimal method of quantitative leucocyte bowel scanning.

Patients and methods
Twenty four patients underwent both 99mTc HMPAO and 111In labelled leucocyte scans. The second scan was performed within 10 days of the first and there were no changes in treatment between the scans. The 99mTc HMPAO scan was always performed before the 111In scan.

The patients had a mean age of 43 years (range 17–68) and were equally distributed between male and female. The diagnosis,
based on previous investigations, was Crohn's disease in 22 of the cases and ulcerative colitis in the remaining two. Six patients with Crohn's disease had undergone previous resective surgery, all surgery having been performed more than six months before the imaging. The disease duration, from diagnosis to scanning, ranged from three months to 22 years, mean eight years. The site of disease had not been fully determined by prior large and small bowel radiology in five patients, but was known to be limited to the colon in five, small bowel in eight, and present in both small and large bowel in six.

An additional 54 99mTc HMPAO scans, performed in the course of clinical assessment of disease activity, on 33 patients with Crohn's disease were analysed to compare the reproducibility of visual and computer assisted grading.

This study had the approval of the ethics committee of the former United Sheffield Hospitals and the Administration of Radioactive Substances Advisory Committee (ARSAC). The initial scan was clinically indicated to assess disease activity. Patients gave informed consent for the second (paired) scan. All scans were performed between February 1990 and January 1992.

111In Indium leucocyte labelling, imaging, and faecal collection

Autologous leucocytes were separated and labelled with 111In tropolonate as previously described. In summary, 60 ml of blood were taken into 5-5 ml of acid citrate dextrose. Ten ml were centrifuged at 1500 g for 10 minutes to obtain cell free plasma. The erythrocytes were removed from the remaining blood by hydroxyethyl sedimentation at room temperature. The supernatant was then centrifuged to permit separation of the leucocytes from the platelets. After washing, the leucocytes were labelled in plasma with tropolonate and 111In chloride (Amersham International). Any free 111In was removed by a final wash in plasma, before re-injection. An average of 15 MBq of 111In labelled cells was injected into each patient.

A dynamic study of the posterior lung fields was performed for 15 minutes after re-injection to exclude any cell injury during labelling.

Abdominal scans were performed at three hours after re-injection using a large field of view gammacamera. Faecal 111In excretion was measured on a four day collection, which started immediately after the scan. All patients were given clear written and verbal instructions regarding the faecal collection. The importance of acquiring a complete four day collection was stressed. All faecal collections were done on an outpatient basis.

99mTcTechnetium HMPAO labelling and imaging

The technique of labelling granulocytes in mixed leucocyte suspension using 99mTc HMPAO has previously been described. Briefly, 102 ml of venous blood were taken into 18 ml of acid citrate dextrose. Twenty ml were centrifuged to obtain cell free plasma. Leucocytes were separated as described above and were resuspended in cell free plasma. Four ml of 99mTc HMPAO, reconstituted according to the manufacturer's instructions, were added to the leucocyte suspension, mixed gently, and left for 10 minutes at room temperature. After this the labelled cells were washed once with plasma before being transferred to a heparinised plastic syringe for re-injection. An average of 200 MBq of 99mTc labelled cells was injected into each patient.

As with the 111In scintigraphy, a dynamic study of the posterior lung fields was carried out for the first 15 minutes after injecting the radiolabelled leucocytes. No patients showed prolonged lung retention of labelled cells.

Subsequently anterior and posterior abdominal scans were obtained at 40 minutes and 120 minutes using a large field of view gammacamera (IGE 400T or Siemens ZLC 750 Digitrac), fitted with a low energy, high resolution collimator and interfaced to a microcomputer (Research Machines Nimbus PC20).

Quantitative assessment of leucocyte scans

Visual assessment – the 99mTc HMPAO scans acquired at 120 minutes were coded and scored blindly and independently by three physicians. A scoring system similar to that used by other investigators was used. The colon was divided into four regions (rectosigmoid, descending, transverse, and ascending) with a fifth region representing the small intestine. The imagine intensity in each region was compared with the distribution of isotope in the bone marrow (score 1), liver (score 2), and spleen (score 3). A score of 4 was assigned if the bowel intensity was greater than in the spleen. The addition of the scores for the five regions produced a visual grading score for the whole scan, with a potential range 0–20.

Computer generated scan score – using the image obtained at 120 minutes after re-injection of 99mTc a computer generated scan score

![Figure 1: The computer generated scan score derived from the 99mTc HMPAO image v the percentage 111In faecal excretion in paired scans.](http://gut.bmj.com/content/gut/35/5/659/16)
Assessment of IBD activity with labelled leucocytes

was calculated. The method has been described previously.10 In outline, the patient image is scaled in size to that of a standard image, which consists of spleen, liver, and bone marrow activity without localised bowel uptake. The standard or 'background' image is then scaled in amplitude and digitally subtracted from the patient’s image, leaving only the bowel related uptake. The scan score, which is a dimensionless quantity, is then calculated from the counts in a 20% contour based on the maximum intensity in the abnormal gut. This value is corrected for image acquisition time and injected dose by normalisation to the bone marrow uptake of the scaled standard image.

Determination of percentage faecal excretion – the indium activity excreted in the faeces was determined by counting each of the daily collections in a large volume sample gamma-counter, equipped with a rotating table. The activity from all collections was summed and expressed as a percentage of the injected dose. As the percentage of labelling of granulocytes in the mixed cell suspension in each patient was not known, it was necessary to assume that this was constant across all subjects.

Results

Twenty four patients underwent paired 99mTc HMPAO and 111In labelled scans. Three patients failed to complete their faecal collection despite verbal and written instructions of the procedure. A further patient became constipated during her four day collection after taking analgesia for a migraine attack. In this case the 111In leucocyte scan performed at two hours was at variance with the low faecal excretion. After the problem of her constipation became apparent this result was excluded from the analysis.

One patient had uptake on her 99mTc HMPAO scan that did not conform to bowel outline. This remains an unexplained artefact. She had a low faecal 111In excretion (2-8% of injected dose) and a repeat 99mTc HMPAO scan a few weeks later gave a correspondingly low scan score without repeat of the artefactual uptake. This is the only such artefact we have seen in over 200 99mTc HMPAO bowel scans.

The remaining 19 paired 99mTc HMPAO scan scores and percentage faecal 111In excretion results showed a positive correlation (Fig 1). The Spearman rank correlation coefficient (r_s) was 0.78 ($p<0.001$).

Visual assessment of 54 additional 99mTc HMPAO scans was performed by three independent assessors. Total agreement in final visual score was obtained in only seven cases. There was a difference of one point in 17 cases, two points in 13 cases, three points in 11 cases, four points in five cases, and more than four points in two cases (one by five, one by seven). If a difference of two or less is regarded as reasonable agreement, then 69% of scans reached this level of agreement, but 31% failed to do so. Repeated scoring by one physician independently of the previous scores produced identical scores in 48%, and a difference of two or less in 93%. Repeated analysis by the computer of the scan score produced a coefficient of variation of only 5-6%.

The images from both types of tracer study (111In and 99mTc HMPAO) could be used to localise the site of active disease. Previous studies have shown this to be accurate when compared with radiological, histological, and endoscopic assessment.5,8,14 Figure 2 shows four representative pairs of images. The image quality in the 99mTc HMPAO scans was superior in every case, with sharper definition

Figure 2: Four pairs of 111In and 99mTc HMPAO images, showing the superior image quality of the obtained using 99mTc HMPAO. All the 99mTc HMPAO images were acquired at 120 minutes after injection.
of the normal landmarks and the diseased bowel.

Discussion

Previous studies have independently verified the ability of 111In and 99mTc HMPAO labelled leucocyte scintigraphy to localise intestinal inflammation in inflammatory bowel disease.4-6 It has also been shown that overall disease activity correlates well with the percentage of 111In excreted in a four day faecal collection.14 This has been used to measure the inflammatory response to treatment.15 Attempts to grade 99mTc HMPAO scans visually have been less successful, either because the grading system was too simple (zero to four) or, if more complicated, because it suffered unacceptable interobserver variation.16

In this study, the first to compare 99mTc HMPAO scanning with faecal 111In excretion in a quantitative analysis, we have attempted to find out if reliable quantitative information can be obtained from 99mTc HMPAO scans. We have used both summed visual grading and computer derived scan scores. There is good correlation between percentage 111In faecal excretion and the 99mTc HMPAO scan score.

The failure of three patients to complete faecal collection is no worse than other centres,14 but illustrates an important drawback to 111In faecal assessment. Patients dislike faecal collection. Measurement of whole body 111In retention at four days has been proposed as an alternative to faecal collection.17 Unfortunately the four day delay in obtaining the result applies to both faecal collection and whole body retention and often prohibits the use of the investigation if the clinical problem is urgent.

The failure of one patient to excrete her 111In despite its appearance on the scan, because of drug induced constipation, shows that four day collection can be disrupted even in the most determined patients. Instructions on how to perform faecal collection need to be clear and explicit. The use of written details, as in this study, has been shown to minimise the discrepancy between 111In faecal collection and whole body 111In retention.17

One of the 99mTc HMPAO scans showed an abnormal artefact that we cannot explain, but this is an unusual occurrence.

The summed visual grading assessment in this study showed an unacceptable interobserver variation with 31% of scans having significant disagreement between three observers. This level of variation would preclude its use for assessment of overall inflammation in therapeutic trials as well as reducing its value in routine clinical practice. The computerised scan score showed better reproducibility and therefore seems to overcome this problem. The subtle nature of the changes in activity in response to treatment has been shown by the use of faecal 111In excretion for this purpose. The percentage 111In excretion fell from the increased values in active disease but did not revert to the range for normal controls or fully inactive disease.14 15

Both the 111In and 99mTc HMPAO techniques used mixed leucocytes rather than pure granulocytes. In the case of the 111In label pure granulocytes and mixed leucocytes have been compared previously.6 Pure granulocyte preparations seemed to produce scans with clearer images and may deliver a lower radiation dose to lymphocytes. Active and inactive Crohn’s disease could be distinguished using either pure granulocytes or mixed leucocytes.6 Using mixed cells for 111In scanning necessitates an assumption of constant labelling efficiency. The percentage 111In labelling of pure granulocytes in a mixed cell preparation has previously been found to be 31% (SD 6%).6 Ideally this percentage needs to be known for each patient, however, this requires a density gradient separation of granulocytes from an aliquot of mixed cells, a technique that requires additional expertise and facilities, which may not always be available. As 99mTc HMPAO effectively labels granulocytes in a mixed cell preparation, further cell isolation procedures are unnecessary for this label.13

In this study the injected activities were on average 125 MBq and 99mTc HMPAO 200 MBq. The corresponding irradiation doses have been calculated to be 6-75 cGy and 4·0 cGy to the spleen, 0·9 cGy and 0·2 cGy to the liver, and 1·65 cGy and 0·25 cGy to the bone marrow for 111In and 99mTc HMPAO respectively.16 The radiation dosage is substantially lower with the 99mTc HMPAO scanning technique, however, using 99mTc HMPAO the image quality is superior to the 111In scans.

In conclusion, these results show that the 99mTc HMPAO scan score has value in quantification of overall disease activity. This is similar to the percentage faecal 111In excretion with which it correlates closely. 99mTc HMPAO scans avoid faecal collection, produce superior images, and expose the patient to less radiation than 111In scintigraphy. 99mTc HMPAO scans may therefore be the preferred method.

The authors wish to thank the staff of the Medical Physics Department at the Royal Hallamshire Hospital, especially Ms S Southern, for technical help performing the scans.

Quantitative assessment of overall inflammatory bowel disease activity using labelled leucocytes: a direct comparison between indium-111 and technetium-99m HMPAO methods.

J C Mansfield, M H Giaffer, W B Tindale and C D Holdsworth

Gut 1995 37: 679-683
doi: 10.1136/gut.37.5.679

Updated information and services can be found at:
http://gut.bmj.com/content/37/5/679

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/